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Hierarchical organization of biological complexity
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Data -> information -> Knowledge
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Why is an OKN needed in
Biomedicine?

To make use of existing data!

* Reductionism vs. Gestalt
— Eternal disagreement in “getting details right” vs. “whole picture”?

e Complex vs. complicated
— Non-linear dynamics
— Interdependence
— Emergent properties

* Medicine is behind the curve
— ML and Al developed decades ago
— No fully taking advantage of computational power



SPOKE: A database of databases

Side
effects

compounds

19 databases
50,000 nodes
2M edges



Uses for SPOKE

Discovery/research
Drug repurposing
Context-dependent patient stratification

Diagnosis/prognosis



Can every drug be systematically
repurposed?



Imagine...




1,538 approved

136 complex diseases
small molecule compounds







small |
molecules diseases







Molecular
function

L

?Q\\ DS

‘..\\_.\. p

e




Biological
process

Molecular _
function {

NS

mole



Biological
process Cellular
compartment

£i1a

Molecular -
function {

mole



Biological
process Cellular

compartment
Molecular _ P
function (=
Biological

Jpathways

Mo



Biological

process Cellular
compartment
Molecular - P
function ( } 7. @

Biological
| pathways

MOIE



Biological
process Cellular
compartment

Molecular .
function ()

>

Mo

symptoms



Biological
process Cellular

compartment
A

Molecular
function{

| Biological
pathways

Side MO

effects
symptoms



Biological
process Cellular

compartment
Molecular P

function{ =~
N \\\:y

Biological
pathways

A\
P I
f Disease
' /}//
Side Z
effects \ ;
O symptoms

47,031 nodes (11 types)
2,250,197 relationships (24 types)



Pipeline summary

Created Hetionet v1.0 — an integrative network
with 2,250,197 relationships of 24 types.

Extracted features from the network (to

guantify the prevalence of specific path types between
each compound and disease). 46.8M paths!

Fitted regularized regression model (o

translate from network-based features to a probabillity of
treatment for a given compound-disease pailr).

Permuted the network (to reduce false positives)



Feature contribution
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Prediction Performance
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Top predictions

disease_name

Pamidronate
Alendronate
Risedronate
Esomeprazole
Ibandronate
Glyburide
Omeprazole
Alendronate
Etidronic acid
Pamidronate
Furosemide
Risedronate
Ibandronate
Etidronic acid
Bumetanide
Olsalazine
Aminophylline
Methotrexate
Paricalcitol

Topiramate
Ethotoin
Losartan

osteoporosis
osteoporosis
osteoporosis
Barrett's esophagus

Paget's disease of bone
type 2 diabetes mellitus

Barrett's esophagus

Paget's disease of bone
Paget's disease of bone

Paget's disease of bone

hypertension
Paget's disease of bone

osteoporosis
osteoporosis
hypertension
Crohn’'s disease

asthma

lung cancer
osteoporosis
epilepsy syndrome

epilepsy syndrome

hypertension

Between 30-300 fold increase over null!

DM
DM
DM
DM

DM
DM
DM
DM
DM
DM
DM
DM
DM
DM

DM
DM

DM

C D E F G H
~ | category |~ prediction |~ compound_percentile - disease_percentile ~ | prior_prob |~ n_trials ~
88.69% 100.00% 100.00% 3.85% 0
88.50% 100.00% 99.93% 3.85% 68
88.11% 100.00% 99.87% 3.89% 0
82.31% 100.00% 100.00% 0.23% 7
80.26% 100.00% 100.00% 0.72% 0
79.96% 100.00% 100.00% 5.88% 26
78.68% 100.00% 99.93% 0.23% 11
76.98% 99.26% 99.93% 1.49% 2
74.88% 100.00% 99.87% 1.49% 2
72.96% 99.26% 99.80% 1.49% 0
71.71% 100.00% 100.00% 28.33% 4
71L.71% 99.26% 99.74% 1.49% 0
71.47% 99.26% 99.80% 1.92% 39
68.64% 99.26% 99.74% 3.85% 15
68.42% 100.00% 99.93% 11.06% 0
66.53% 100.00% 100.00% 0.72% 0
64.97% 100.00% 100.00% 10.43% 3
61.48% 100.00% 100.00% 41.76% 0
60.35% 100.00% 99.67% 0.00% 0
80.27% 100.00% 100.00% 10.13% 35
58.85% 100.00% 99.93% 0.00% 0
57.33% 100.00% 99.87% 28.33% 79

DM



Bupropion may treat nicotine dependence
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EHR Knowledge network
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Network Signature for Patient | at time point |
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Find hubs by clustering network signatures



UCSF Knowledge Network

UCSF Knowledge Network™

Principal Investigators: Sourav Bandyopadhyay, Sergio Baranzini & Michael Keiser

*subject to renaming and new graphics

. SPOKE .
Scalable PrecisiOn medicine Knowledge Engine

UGSE University of California, San Francisco About UCSF  SearchUCSF  UCSF Medical Center

Precision Medicine at UCSF About Elements of Precision Medicine Programs News Resources PreC|S|On Med|C|ne at UCSF About Elements of Precision Medicine

Home > Content > Computational Health Sciences

Home > UCSF Precision Medicine Platform Committee

Computational Health Sciences

UCSF Precision Medicine Platform Committee

Leadership

Computational Health Chair: Keith Yamamoto, PhD
Sciences: Atul Butie, MD, PhD




UCSF SPOKE Team

Sourav Bandyopadhyay Michael Keiser Sharat Israni

Charlotte Nelson

Krish Bharat

Scooter Morris



Bioscience breakout

Brief background of OKN, meeting goals, and discussion topics
What is the state-of-the-art for open knowledge networks in BIO

What are the main gaps/challenges, why do they exist, and how do we
address them

What is different about BIO from other domains (geosciences, finance, etc)
What does BIO share with other domains

Possible next steps



Goals

* OKN
* To gather experts’ opinions on KN



State of the art

Watson (IBM)
SNORKEL (Stanford)
NCATS (NIH)

SPOKE (UCSF)
Others?



Challenges to BIO OKN

* Experts on multiple disciplines are needed



Why is BIO unique?

* Scale
—Several orders of magnitude
* Complexity

—unmatched



