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Not News: End of Decades of Moore’s Law scaling
Less talked about: Shift 
to heterogeneity & 
parallelism has broken 
how software scales in 
performance & cost.
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1964: 
While Moore’s Law was 
being sketched, 
“Computer Architecture” 
was coined…

= The value of HW/SW abstraction…

G. M. Amdahl 

G. A. Blaauw 

F. P. Brooks, Jr., 

Architecture of the IBM System/360 

Abstrad: The archiledure • of the newly announced IBM System/360 features four Innovations: 

1. An approach to storage which permits and exploits very large capacities, hierarchies of speeds, read

only storage for microprogram control, flexible storage protection, and simple program relocation. 

2. An input/output system offering new degrees of concurrent operation, compatible channel operation, 

data rates approaching 5,000,000 charaders/second, integrated design of hardware and software, a new 

low-cost, multiple-channel package sharing main-frame hardware, new provisions for device status Infor

mation, and a standard channel interface between central processing unit and input/ output devices. 

3. A truly general-purpose machine organization offering new supervisory facilities, powerful logical pro-

is used here to describe the attributes of a 
programmer. i .. e., tht conceptual structure and 

~Tbe term a-Ychitectu,-e 
system as setn by the 
functiooal behavior, as distinct 

line of six models having a per-

ionale for the main features of the 

mpatibility among central process

scientific, real-time, and logical in

ha Appendices. 

and controls, the logica1 design, 
from the organization of the data flow 
and the physical implementation .. 

Introduction 

The design philosophies of the new geoeral-purpase ma
chine organization for the IBM System/360 are discussed 
in this paper.t In addition to showing the architecture• 
of the new family of data processing systems, we point out 
the various engineering problems encountered in attempts 
to make the system design compatible, at the program bit 

,r large and small models. The compatibility was 
1d not only to models of any size but also to their 
applications-scientific, commercial, real-time, and 

term art:hittct11rt ~ used here to describe tbe attributes of a 
& 1een by tbe prorrammer, i.e. , tbe concf'ptual structurf' and 
I behavior, ;u distinct from the oraanization of the data flow 
rols, tbe logical design, and the physical implementation. 
tional details concerning the architecture, enginttring design, 
~ill&', and application of the I BM System/ 360 will appear in a 
articles in the IBM Systems Jounal. 

The section that follows describes the objectives of 
the new system design, i.e., that it serve as a base for new 
technologies and applications, that it be general-purpose, 
efficient, and strictly program compatible in all models. 
The remainder of the paper is devoted to the design 
problems faced, the alternatives considered, and the deci
sions made for data format, data and instruction codes, 
storage assignments, and input/ output controls. 

Design obiectives 

The new architecture builds upon but differs from the de
signs that have gradually evolved since 1950. The evolution 
of the computer had included, besides major technological 
improvements, several important systems concepts and 
developments: 87 
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2019:
We are here
Heterogeneity “In the Large”:
• 1000’s of distinct Android 

devices
• IoTs even more diverse

Heterogeneity “In the Small”
• Dozens of ISAs on chip + 

Accelerators
• Memory, Data Heterogeneity
• Memory Consistency Models

https://www.anandtech.com/show/9330/exynos-7420-deep-dive/2 
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Seismic Shift: 
Entering a 

Post-ISA 
World

ISAs still useful, but little/no relevance as abstraction 
layer

• Apple A8 and beyond: >50% of chip area is 
accelerators that have no ISA. 

• NVIDIA PTX vs. SASS: ISA hidden under other 
layers.

Questions for the Post-Moore/Post-ISA Future:
• How to program these highly heterogeneous 

systems? How to manage the complexity of fast-
changing hardware and software?

• How to verify them?
• And what technologies come next?
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DECADES: A VERTICALLY-INTEGRATED APPROACH

• Enhance data locality
• Optimize spatial mapping of threads 
• Enable in-memory computing

Language and Compiler 
Support

• Coarser than CGRA → VCGRTA
• 3 classes of reconfigurable tiles
• Reconfigurable interconnection network
• Reconfigurable in-memory computing

Very Coarse-Grained 
Reconfigurable 

Tile-Based Architecture

• Scalable full-system simulation
• Multi-FPGA emulation infrastructure
• 225-tile DECADES chip prototype

Multi-Tiered 
Demonstration Strategy



DECADES PLATFORM ARCHITECTURE
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DECADES Core and Accelerator tiles
• Computations mapped onto 

core tiles or available 
accelerator tiles
• Each tile is wrapped in 

monitor/reconfiguration 
shim

• Dynamic reconfiguration of 
Supply-Compute decoupling, 
power-performance 
tradeoffs, and interconnect
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DECADES Storage Specialization
• Specialization #1: 

Map apps onto mix of 
compute tiles and 
intelligent storage (IS) tiles
• Specialization #2: 

Select and configure 
appropriate storage 
features within IS
• Configurable memory 

banks + address and 
prefetching features

• Simple near-SRAM ALU

DECADES Intelligent Storage Tile

Configurable
Interconnect

Shim

FIFO Head/Tail 
Pointer Array

Intelligent DMA 
Engine

Cache Pipeline

Pattern-Based 
Prefetcher

Configurable Bank Interconnect

Performance Monitoring 
Registers

Multi-grain
Associative
Tag Array

ALU for near 
SRAM 

processing

Configurable Memory Banks



Improving Latency-Bound
Applications with 
Decoupled Execution

• Roots in seminal 1982 Smith DAE paper: 
Separately execute memory accesses (supply) 
from instructions that compute with them 
(compute)
• Then: Latency tolerance “simpler” than out-

of-order execution
• Now: Fits well with accelerator-oriented 

design
• Separate memory supply from accelerator 
• Orthogonal to DOALL parallelism and 

bandwidth optimizations
• Automatically identify and slice at compile 

time

mo Y 

w 
r e 
i 

AQ 

• • • 
' da 

Access 
Processor 

gist r 
file 

F g. 1. 

ions 

-·ns r c ions 

AQ 

AEBQ 

E ecu e 
P oc s or 

register 
fil 

1 0 E Archi 



DECADES Decoupled Supply-Compute Parallelism:
Automatic Compilation + HW support

2 in-order CPUs Outperform 1 large out-of-order CPUs at 3X less 
power, area

Metric Improvement

Performance 10%

Area 33%
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DECADES Reconfigurable Parallelism
• Coarse-grained reconfigurability
• Workflow Sinkhorn contains a sequence of two 

kernel calls:
• Sparse Elementwise
• Dense Matrix Multiplication

• Each benefit from different system configurations 
for a finite number of resources
• Sparse benefits from decoupled supply/compute
• Dense benefits from traditional parallelism

• Decades architecture can be reconfigured to either 
use 
tiles as suppliers, or all tiles as compute

Example: 6-tiled system configs

C C

C C C

C

All Compute

C C C

S S S

Half Suppliers

Application All Compute Half Suppliers

Sparse 5x 7x

Dense 6x 5x

Speedups

□□□ 
□□□ 

□□□ 
□□□ 



This Talk: 
A whirlwind 

tour of…

Questions for the Post-Moore/Post-ISA Future:
• How to program these highly heterogeneous 

systems? How to manage the complexity of fast-
changing hardware and software?
• How to verify them?
• And what technologies come next?



Post-ISA Hardware 
Design
SOCs comprised of many CPUs, 
GPUs, and accelerators from many 
vendors
-> How to verify that a given block 
does what it is specified to do?
-> How to formally specify what 
blocks should do?

-> Formal Interface 
Specifications are the new 
ISA!

https://www.anandtech.com/show/9330/exynos-7420-deep-dive/2 

M-Comp <,lim<,<,<, ..,..,.., ',MOMA 0 ~ "' 6• SPI TMJ .., 
"' 

:: ,, u . ~ 
in al ~ = -:: ~ 9• ►tS1.Zl M(I 

A57 A57 I I "' "' s .~ ~ ) :::) 

I •• UART W'G 

A53 A53 ,i, 
PlM 

0 Unknown 
A57 A57 0 A53 A53 SPDIF 

~ 
u PWM 

u 
~ - 256KBL2 

ANANDTECH 
.., 

A5 ~ UJ w 
~ 

2MB L2 Exynos 7420 "~"'° > - -
II 

Abstracted F,loor Pl■n 

BUSO Go6(2015 Andrtl ftulllUSaftU SR,1/,I 

BUSl 
II 

....L. I II T .... JP[G GW - MR ...... ShadPr -
xaler xaler 

Core 
N N 
~ 

a:) a:) 

',cal er :,,,:: :.;:: 
A5 ,... ..... 

N N 
ISP .... ... 

0 BNS 3AA U"I .ti "' ~ 
PMS Shader Shader ~ w w > Core Core > - IISP + Cameras - (largely unknown} 

3• l•ter"• 5,eri,or Shader Shader Shader 
rwM 3, ;:c WT::; Core Core Core .~ ;:,_ ~Pl 11 .;ART 41 (SI 

lMJ 

:x: 

I I 
I 

I I Shader Shader 0 0 ,.-:-\. MCNl.ti u.. ~ u u Uni Pro 

OISPO 
Q_ 

DtSPl 
Q_ Core Core ~:;; ~ ~ UfS 2.0 "'- Q. ~-c Q. 

~ ~ > > 
\wlllPI ;)-51,,DP , .. P1 :,-.S.1;:)P 



The Check Suite: An Ecosystem of Tools For Verifying 
Memory Orderings and their Security Implications

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

RTL (e.g. Verilog)

PipeCheck [Micro ‘14] [IEEE MICRO Top Picks]

TriCheck [ASPLOS ‘17] [IEEE MICRO Top Picks]

CCICheck [Micro ‘15] [Nominated for Best Paper Award]

COATCheck [ASPLOS ‘16] [IEEE MICRO Top Picks]

RTLCheck [Micro ‘17] [IEEE MICRO Top Picks Honorable Mention]

Our Approach
• Axiomatic specifications -> Happens-before graphs
• Check Happens-Before Graphs via Efficient SMT solvers 
• Cyclic => A->B->C->A… Can’t happen
• Acyclic => Scenario is observable

A

C
B

CheckMate
[Micro ‘18]
[IEEE Micro 
Top Picks] 

PipeProof
[Micro ‘18]
[Best Paper Nominee.
IEEE Micro Top Picks
Honorable Mention]

For more info: check.cs.Princeton.edu

c; 



Check: Formal, Axiomatic Models and Interfaces

Coherence Protocol (SWMR, DVI, etc.)

Lds.

L2WB

Mem.

SB

L1
Exec.

Dec.

Fetch

WB

Mem.

SB

L1
Exec.

Dec.

FetchAxiom "PO_Fetch":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>

AddEdge ((i1, Fetch), (i2, Fetch), "PO").

Axiom "Execute_stage_is_in_order":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\
EdgeExists ((i1, Fetch), (i2, Fetch)) =>
AddEdge ((i1, Execute), (i2, Execute), "PPO").

Microarchitecture Specification in 
μSpec DSL

Microarchitectural happens-before (µhb) graphs
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TriCheck Framework: Verifying Memory Event 
Ordering from Languages to Hardware

HLL 
Mem Model Sim

ISA
Mem Model 

uArch
Mem Model 

Obs. Not obs

Permit ok Over
strict

Forbid Bug ok

High-level Lang
Litmus tests

HLL->ISA 
Compiler 
Mappings

ISA-level
Litmus tests Observable/

Unobservable

Permitted/
Forbidden

Compare Outcomes
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RISC-V Case Study
• Apply TriCheck to 7 legal RISC-V implementations: 
• All abide by current RISC-V spec
• Vary in preserved program order and store atomicity

• Results:
• Impossible to compile C11 for RISC-V as specified. 
• Insufficiently strong fence instructions, load-load 

reordering, …
• Out of 1,701 tested C11 programs:
• RISC-V-Base-compliant design allows 144 buggy outcomes
• RISC-V-Base+A-compliant design allows 221 buggy 

outcomes

Takeaway: Draft RISC-V 
spec could not serve as a 
legal C11 compiler target

Next Steps: RISC-V Memory 
Model Working Group 
formed to address these 
issues. Ratified a new and 
formally specified RISC-V 
memory model that 
supports C11, Linux, etc.



From Memory Consistency Models to Security: 
What we would like…

Formal interface and specification of 
given system implementation

1. Specify 
system to study

E.g. Subtle event sequences during 
program’s execution

2. Specify attack 
pattern

Either output synthesized attacks.  Or 
determine that none are possible3. Synthesis



The CheckMate Tool:
Automated Attack Discovery & Synthesis

Axiomatic specifications similar to 
Check tools

1. Specify 
system to study

Event sequences as graph snippets
2. Specify attack 
pattern

Relational Model Finding (RMF) 
approaches3. Synthesis

• What we did: Developed a tool to 
do this, based on the uHB graphs 
from previous sections. 

• Results: Automatically synthesized 
Spectre and Meltdown, as well as 
two new distinct exploits and many 
variants.

[Trippel, Lustig, Martonosi. https://arxiv.org/abs/1802.03802]
[Trippel, Lustig, Martonosi. MICRO 2018. October, 2018] http://check.cs.princeton.edu/papers/ctrippel_MICRO51.pdf



Microarchitecture-Aware Security Verification
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Axiom "PO_Fetch":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>

AddEdge ((i1, Fetch), (i2, Fetch), "PO").

Axiom "Execute_stage_is_in_order":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\
EdgeExists ((i1, Fetch), (i2, Fetch)) =>

AddEdge ((i1, Execute), (i2, Execute), "PPO").

+ 

+ 



Overall Results: What exploits get synthesized?
And how long does it take?

24



The Check Suite: Bug Finds and Other Key Takeaways

So far, tools have found bugs in:
• Widely-used Research simulator
• Cache coherence paper
• In-design commercial processors
• RISC-V ISA specification
• Compiler mapping proofs
• IBM XL C++ compiler (fixed in v13.1.5)
• C++ 11 mem model

+ Spectre Prime, MeltdownPrime, and 
other Vulnerabilities automatically 
synthesized

Key Takeaways
• Need formal, well-

specified interfaces
• From well-specified 

interfaces-> Interaction 
models and analysis

• From well-specified 
interfaces ->  Reliability 
and performance metrics



This Talk: 
A whirlwind 

tour of…

Questions for the Post-Moore/Post-ISA Future:
• How to program these highly heterogeneous 

systems? How to manage the complexity of fast-
changing hardware and software?
• How to verify them?
• And what technologies come next?



QC Algorithms to Machines Gap: 
Next Ten Years = NISQ Era

Grovers Algorithm (Database search)

Shor’s Factoring Alg. (Crypto)

Gap!

Quantum Sim, 
Q Chem, QAOA
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Year
1995 2005 20252015

• Noisy Intermediate-Scale 
Quantum (NISQ)
• Preskill, Jan 2018
• 10-1000 qubits

• Too small for known algorithms 
with exponential speedup

• Too small for ECC

• Large enough to support 
interesting experiments!

NISQ

1' 
J, ,, 



QC Algorithms to Machines Gap: Opportunity

QC programming and 
design tools that shrink 
the gap can move the 
feasibility point years 
sooner!
• Reduce algorithm 

qubit requirements
• Improve effectiveness 

of hardware qubits

Grovers Algorithm (Database search)

Shor’s Factoring Alg. (Crypto)

Gap!

Quantum Sim, 
Q Chem, QAOA
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More
Work

Needed!
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An Architect’s Comparative Study of NISQ Machines

Architectural choices and design questions
• Gate sets, Connectivity, Noise properties of qubits

In-depth exploration
• Real-systems runs across 7 NISQ systems (3 vendors)
• Enabled by our multi-vendor compiler toolflow: fair and accurate 

comparisons avoiding inefficiencies from vendor compilers

Design insights from our study
• Gate set choices
• Connectivity choices
• NISQ execution stack

[Murali et al. International Symposium on Computer Architecture. 
June, 2019. https://arxiv.org/abs/1905.11349 ]

https://arxiv.org/abs/1905.11349


Large Variations in 
Machine 
Characteristics

• Optimized compilation 
for qubit communication 
is not sufficient!
• Large spatial and 

temporal variations in 
gate error rates!
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Large Variations in 
Machine Characteristics
Part 2

• Large spatial and 
temporal variations in 
Qubit Coherence Times
• How long they hold their state
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Machine Qubit Topology

IBM Q5 
Tenerife

IBM Q14 
Melbourne

IBM Q16 
Rüschlikon

Rigetti
Agave

Rigetti
Aspen1

Rigetti
Aspen3

UMD Trapped 
Ion (UMDTI)

Name Qubits Gates

BV4 4 12

BV6 6 12

BV8 8 18

HS2 2 16

HS4 4 28

HS6 6 42

Toffoli 3 18

Fredkin 3 19

Or 3 17

Peres 3 16

QFT 2 13

Adder 4 23

Programs
Machines

TriQ
Compiler



Putting it all together…
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OS

High-Level Languages

Compiler

Architecture

VLSI Circuits

Semiconductor transistors

Algorithms Algorithms

Qubit implementations

High-level QC Languages.
Compilers. Debugging.

Optimization.
Error Correcting Codes

Orchestrate classical gate 
control, 

Orchestrate qubit motion 
and manipulation. 

~1950’s Classical Computing

Vacuum Tubes, Relay Circuits

Assembly Language 

Algorithms

Quantum Systems Today: An Analogy

Quantum Toolflows

Modular hardware blocks: 
Gates, registers

Today’s Classical Computing



OS

High-Level Languages

Compiler

Architecture

VLSI Circuits

Semiconductor transistors

Algorithms Algorithms

implementations

Post-ISA Systems: Automated full-Stack 
compilation via APIs and formally-spec’d interfaces 

Post-ISA Toolflows

Modular hardware blocks: 
Gates, registers

High-Level Languages

Classical Layering

App-specific 
Approaches

App-specific 
Approaches

Examples:
QC Toolflows

TensorFlow and TPUs

…

Potential for a Seismic Shift in 
Computer Systems Design
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http://check.cs.Princeton.edu
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Quantum Resources:
CRA CCC Workshop Report “Next Steps in QC: 
Computer Science’s Role”
https://arxiv.org/abs/1903.10541

National Academies Report “Quantum 
Computing Progress and Prospects”
https://www.nap.edu/catalog/25196/quantum-
computing-progress-and-prospects
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