
Needed Foundations for Assuring the Desirable
Behavior of Software-Reliant Systems

Linda Northrop
Software Engineering Inst.

4500 Fifth Avenue
Pittsburgh, PA 15213-2612

+1 412-268-7638

lmn@sei.cmu.edu

Mark Klein
Software Engineering Inst.

4500 Fifth Avenue
Pittsburgh, PA 15213-2612

+1 412-268-7615

mklein@sei.cmu.edu

John Goodenough
Software Engineering Inst.

4500 Fifth Avenue
Pittsburgh, PA 15213-2612

+1 412-268-6391

jbg@sei.cmu.edu

Dennis Smith
Software Engineering Inst.

4500 Fifth Avenue
Pittsburgh, PA 15213-2612

+1 412-268-6850

dbs@sei.cmu.edu

ABSTRACT
Future trends and current limitations presage a need for interdis-
ciplinary foundations for designing, constructing, maintaining,
adapting, and rapidly deploying software-reliant systems with
assured system capabilities at all scales.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification –
reliability, validation. F.3.1 [Theory of Computation]: Logics
and Meanings of Programs – logics of programs, invariants.

General Terms
Design, Reliability, Theory, Verification.

Keywords
architecture, system of systems, ultra-large-scale systems, cyber-
physical systems, software assurance

1. INTRODUCTION
In general, the ability to rapidly develop and field software-reliant
capability is deficient. Part of this deficiency can be attributed to
business and governance issues. But part of the reason is techni-
cal—software systems science and engineering knowledge is
inadequate to ensure that software-reliant capabilities can be rap-
idly fielded while being sufficiently safe, reliable, secure, respon-
sive, and adaptable to change.
This deficiency applies across a spectrum of systems that rely on
software to be functional (software-reliant systems). Such sys-
tems include safety-critical and embedded systems, IT applica-
tions, cyber-physical systems, families of similar systems, sys-
tems of independent systems, and ultra-large-scale systems. To-
day, the greatest challenges come when attempting to field or
upgrade systems of systems (SoSs). When we say SoSs we don’t
mean avionics systems, airplanes, or cars, but rather multi-system
configurations in which the constituents are independent. The
constituent systems in SoSs are decisionally autonomous and
interact independently but need to interoperate to provide local
and global capabilities. SoSs can manifest as cyber-physical sys-
tems, socio-technical systems, or cyber-physical-social systems.
SoSs serve the needs of various users by providing access to data

and services created by different organizations. SoSs may include
safety-critical elements running in concert with IT applications or
enterprise systems, such as health-monitoring devices that com-
municate with both device-monitoring systems and individual
electronic health records. They may include families of similar
systems, where interoperability challenges are only exacerbated
when such systems are developed and maintained separately with
no systematic means to take advantage of their commonality.
Techniques for rapidly fielding and evolving systems of systems
are clearly inadequate today. For example, today’s testing and
security-certification processes are major barriers to rapid fielding
of software-reliant systems because there is inadequate technol-
ogy to work quickly and still be confident that serious problems
will be detected before fielding. Determining what constitutes
acceptable behavior has itself become a problem. What does reli-
ability mean in this context? How does one “test” for agility and
adaptability? To conduct early and ongoing analyses to ensure
acceptable behavior of all software-reliant systems, software and
system engineers need appropriate abstractions for each system
type and for combinations of system types. Architecture has be-
gun to serve that role. While there is evidence that architecture-
centric practices are being adopted, the use of effective architec-
ture practices is still limited. This is evidenced in recent studies
by NASA [3] and the NRC [8]. Increasing system scale and multi-
system configurations pose additional problems for architecture-
centric practices. There is a dearth of effective architectural prin-
ciples and techniques that remain applicable as systems become
more complex and as their social, physical, and computational
elements become intertwined in SoSs.
Future systems will be increasingly more complex. They will
push beyond the bounds of today’s systems of systems in number
of lines of code, amount of data, number of people involved,
number of hardware and software elements, and number of con-
nections and interdependencies. They will be ultra-large-scale
(ULS) systems [15]. Their inherent decentralization, continuous
evolution and adaptation, heterogeneity, routine failures, and
social embedding will further undermine the assumptions of tradi-
tional engineering approaches. New principles and techniques are
needed to cope with these conditions.
Future trends and current limitations presage a need for interdis-
ciplinary foundations for designing, constructing, maintaining,
adapting, and rapidly deploying software-reliant systems with
assured system capabilities at all scales.

Copyright © 2010 Carnegie Mellon University.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
ACM 978-1-4503-0427-6/10/11.

259

2. CURRENT LIMITATIONS
Current practice is to understand, develop, assure, and then finally
field systems. In the understanding and developing phases, soft-
ware and system engineers often fail to recognize that acceptable
behavior of software-reliant systems depends not just on accept-
able functionality but also on non-functional properties such as
security, reliability, interoperability, openness, agility, and so on.
These non-functional properties, or quality attributes, are not
addressed sufficiently early in the system-development or evolu-
tion life cycle, resulting in frequent unacceptable system behavior
and delays in fielding. There are too few early architectural trade-
off analyses based on quality attribute reasoning.
Many traditionally developed systems are taking longer to field
than ever, and their behavior is not improved in the process. Sys-
tems are traditionally developed in one environment (the “engi-
neering environment”) and deployed for use in another environ-
ment (“the operational environment”). Since new opportunities,
capabilities, and threats are not always predictable and are con-
tinuously changing, this whole approach is becoming increasingly
untenable. Moreover there is no way to know before fielding a
system how it will behave in every possible situation. In many
cases, attempts to do so are resulting in increasingly long concept-
to-deployment timeframes. And finally, in some cases the only
way to match the tempo of market needs, or in the defense world
of adversaries, is to allow end users to make changes directly
within the operational environment. Systems then need to be de-
signed to ensure acceptable behavior in the face of user-added
variations, and this is a not trivial.
Though there is research aimed at overcoming the limitations of
current practice, the research pales in comparison to the scope of
technical challenges to be addressed. Gaps in current research
include
• quality attribute foundations for cyber-physical systems real-

time scheduling algorithms and concurrency strategies for
multi-core platforms in cyber-physical systems

• architecture principles and patterns that support the open,
loose coupling required of SoSs

• data modeling, requirements management, configuration
management, identity management, and validation and certi-
fication techniques that directly support SoSs

• SoS technology limitations (For example, service-oriented
architecture (SOA)-based approaches are limited in the way
they handle security, service orchestration, service discov-
ery, mediation, versioning, and application to constrained
environments.)

• quality attribute measures and associated architecture princi-
ples for ULS systems, where humans are not merely users
but are elements in the systems

• assurance approaches that address the special problems of
SoSs

• failure modes of SoSs and how to impose design constraints
that limit or reduce such failure modes

• technologies that will permit, and even encourage, innova-
tion to occur within the operational environment

• automatic adaptation mechanisms to relax the need to com-
pletely anticipate user needs and how users will exploit sys-
tem capabilities to meet new needs

3. NEEDED FOUNDATION FOR SUCCESS
We strongly believe that research is needed with a focus on the
structure and behavior of software-reliant systems and the inti-
mate relationship between structure and manifested quality attrib-
utes. The goal of this research would be to develop theories,
analyses, technologies, techniques, and methods for acquiring
evidence used to predict and bound system behavior for systems
in all domains and at all scales (embedded systems, stand-alone
systems, cyber-physical systems, product line systems, SoSs, and
ULS systems). At the same time, there is a need for the technical
foundations to accommodate change and facilitate rapid and in-
situ deployment, in the face of increasing system scale, range, and
heterogeneity; acceleration of the pace of change; and uncertainty
presented by new technologies, new threats, and unanticipated
system uses.
We believe this will require a combination of formal notations,
quantitative analyses, and qualitative methods that
• address conflicts between quality attributes, interfaces be-

tween the computational and physical aspects of systems,
and systems with concerns of varying levels of criticality

• provide foundations for handling multiple critical quality
attributes in dynamic and resource-constrained environments

• provide improved theories of system structure for bounding
the behavior of systems of systems

• explicitly recognize that systems of increasingly large scale
will manifest new quality attributes; will require the use of
non-traditional theories and analyses for their software de-
sign, construction, deployment, adaptation, and evolution;
and will require new technologies and methods to accommo-
date their scale

3.1 Quality Attribute Foundations/Analyses
Cyber-physical systems have critical quality attribute require-
ments such as reliability and real-time performance requirements
and hence warrant deep analyses to assure their behavior. How-
ever theoretical limitations hinder performing such analyses.
Moreover, techniques do not exist for analytically determining the
ways that multiple attributes affect one another and ultimately for
making tradeoffs between conflicting attributes.
Traditional statistical techniques for analyzing hardware reliabil-
ity are not applicable to software. These techniques assume that
designs evolve slowly. They also assume that the longer a soft-
ware-reliant system executes, the more likely it is that latent de-
fects will be discovered [14]. This approach is problematic be-
cause system designs can evolve rapidly and are often used in
continuously changing environments. Moreover, since many de-
fects will manifest only after system integration, they will be
discovered too late in development and therefore will be very
costly to fix.
The system's architecture in its very structure and properties con-
tains important information that should be exploited to improve
software-reliant system reliability through analysis and testing.
But methods and techniques do not exist to exploit it. To date,
architecture has been exploited in testing only in minor ways;

260

such as to inform regression-testing plans [13] and unit testing
[11]. Researchers have attempted to apply various formal methods
to the problem of detecting component mismatch [6, 7], but these
rely on the presence of behavioral and interface specifications that
are far more complete and formal than are found in practice.
The eventual migration of cyber-physical systems to multi-core
platforms will require new foundations for providing perform-
ance-related guarantees. Most recent real-time scheduling re-
search has focused on single-core allocation [2, 5], and initial
work in parallelizing jobs for multi-core has been very restrictive
[10].
Migration to multi-core platforms will introduce new concurrency
patterns leading to different and possibly undesirable runtime
behavior. Problems introduced as a consequence of migration will
be difficult to diagnose and fix. Tools and techniques for analyz-
ing concurrent systems continue to be limited by the “state space
explosion” problem. Verification has proven to be non-scalable
when scheduling disciplines and synchronization protocols are
ignored as they are in state-of-the-art approaches [9, 4].
Consolidation of multiple single-core systems into a single multi-
core system could also result in critical and non-critical function-
ality being co-resident on the same platform. The mixed criticality
resulting from such consolidation will need to be addressed. Tra-
ditional techniques use isolation approaches that ignore criticality
[16, 1], leading to the possibility of critical tasks being prevented
from acquiring resources.
To fully exploit multi-core platforms, new flexible scheduling
algorithms for parallelized jobs must be developed and analyzed.

3.2 Architecture-Centric Practices
Practices do not exist for uniformly applying architecture and
quality attribute principles across SoSs and their constituent sys-
tems. Design and evolution strategies are ad hoc. Many architec-
tural patterns have been created for software architecture, but not
for system-of-systems architectures. In particular, standard strate-
gies for end-to-end resource management (including handling
degraded modes of operation) do not exist for SoSs.
The increasing scale and complexity of long-lived systems also
underscores the role of architecture in balancing the need to pre-
pare a system for future modifications with the need to provide
immediate capability. Within the software community, there is a
shift toward adopting software-development processes that claim
to accelerate delivery of technical capabilities in the face of an
uncertain future. While agile software development techniques
provide some guidance for quick capability delivery, they do not
account for unanticipated interactions within complex unprece-
dented systems (either during their initial development or as they
evolve over their lifespan). On the other hand, too much upfront
architecting can compromise rapid delivery of capability and can
be wasteful in anticipation of future needs that change. Tech-
niques for determining the right balance of architecture and agil-
ity do not exist, but are vital to the ongoing debate about the ap-
propriateness of agile methods for today’s systems.

3.3 Architecture Principles for ULS Systems
Increasing scale poses additional problems for systems that have
(even some, if not all of the) ULS system characteristics. Well-
established notions of architecture and quality attributes for ULS
systems do not exist. Overall health indicators have not been de-

fined. And generally techniques for designing, evaluating, and
evolving ULS systems need to be developed.
We regard human and social behavior as a critical locus of adap-
tive capability in systems that will operate in environments that
are intrinsically unstable, and about which information will be
necessarily incomplete, fragmented, distributed, and of variable
veracity. This requires new architectural concepts inspired by
well-studied analytic theories developed in the human sciences.
For example, we have demonstrated how to allocate tactical net-
work bandwidth in response to changing human needs by using
auction mechanisms. These mechanisms build on well-studied
microeconomic foundations that account for human value, incen-
tive, and rational behavior [11].
Human self interest is an example of the ULS system characteris-
tic “erosion of the people/system boundary: people will not just
be users of a ULS system; they will be elements of the system,
affecting its overall emergent behavior.” [15]. Therefore resource-
allocation decisions will require theories and techniques that ac-
count for the interactions between the social and computational
aspects of systems. Moreover, since ULS systems are constantly
evolving, the factors that cause change need to be better under-
stood and principles for how ULS systems react to these factors
need to be developed.
We need to invert our thinking from the traditional notion that
humans play prescribed roles in technical systems to one where
computation plays prescribed roles in social systems. That is,
instead of human behavior being bounded by what the system
allows, we need to define the system to support unpredictable
human needs and interactions. This inversion necessarily forces
us to rethink the role and principles of software engineering, but
is critical to achieving the required tempos for software adaptation
and innovation. The ultimate goal is to field socio-technical sys-
tems that are fundamentally self-adaptive.

4. CONCLUSION
From a software engineering perspective, we are currently ill-
equipped to meet the challenges of assuring the desirable behavior
of many of today’s and certainly tomorrow’s software-reliant
systems. The needed research agenda is broad and deep. How-
ever, success implies faster availability of assured and flexible
software-reliant system capability. Instead of taking years to ac-
quire integrated systems and certify them through the testing
process, new techniques will allow for incremental delivery of
assured capability. These techniques will enable the delivered
capability to be sufficiently safe, reliable, secure, responsive, and
adaptable to change. In particular, a stronger technical foundation
will enable
• early detection of potential system and system-of-systems

problems

• efficient use of the available processing power of multi-core
platforms

• analysis of social and computational interaction in systems to
allocate system resources more safely and efficiently

• identification of elements of the assurance process that con-
tribute most to establishing justified confidence in system
behavior

• reduced time needed to field new software-reliant systems
and achieve adequate confidence in overall system behavior,

261

even when the development and evolution of system con-
stituents are not completely under centralized control

• ability of end users to introduce software changes to meet
their local needs with minimal negative impact on other us-
ers (for example, on overall system reliability, security, and
performance)

5. ACKNOWLEDGEMENTS
The ideas in this paper are the result of the research and ongoing
discussion of the members of the Research, Technology, and Sys-
tem Solutions Program of the Carnegie Mellon University’s Soft-
ware Engineering Institute. The authors are technical leaders of
that organization and are greatly indebted to their colleagues.

6. REFERENCES
[1] Aeronautical Radio Inc. 2010. ARINC 653 Specification.

http://www.arinc.com.
[2] Brandenburgh, B.B. and Anderson, J.H. On the Implementa-

tion of Global Real-Time Schedulers. In Proceedings of the
2009 30th IEEE Real-Time Systems Symposium (Washing-
ton, DC, USA, December 1 - 4, 2009) RTSS 2009. IEEE,
Washington, DC, 214-224. ISBN ~ ISSN: 1052-8725 , 978-
0-7695-3875-4.

[3] Dvorak, D. L. 2009. NASA Study on Flight Software Com-
plexity. Technical Report, NASA Office of Chief Engineer
Technical Excellence Program.

[4] Farzan, A. and Madhusudan, P. Causal Dataflow Analysis
for Concurrent Programs. In Proceedings of Thirteenth Inter-
national Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, Lecture Notes in Com-
puter Science 4424/2007 (Braga. Portugal, March 24 – April
1, 2007). TACAS 2007. Springer, Berlin/Heidelberg, 102-
116. DOI 10.1007/978-3-540-71209-1.

[5] Guan, N., Stigge, M., Yi, W., and Yu, G. New Response
Time Bounds for Fixed Priority Multiprocessor Scheduling.
In Proceedings of the 2010 31st IEEE Real-Time Systems
Symposium (San Diego, CA, USA, November 30 – Decem-
ber 3, 2010). RTSS 2010. IEEE, Washington. DC, 387-397.
ISBN ~ ISSN:1052-8725 , 978-0-7695-3875-4.

[6] Inverardi, P., Yankelevich, D., and Wolf, A. Checking As-
sumptions in Components Dynamics at the Architectural
Level. In Lecture Notes in Computer Science 1282/1997.
Springer, Berlin/Heidelberg, 46-63. DOI 10.1007/3-540-
63383-9_72.

[7] Inverardi, P., Yankelevich, D., and Wolf, A.L. Static Check-
ing of Systems Behaviors Using Derived Component As-
sumptions. ACM TOSEM 9, 3 (July 2000), 239-272.

[8] Jackson, D., ed. 2007. Software for Dependable Systems:
Sufficient Evidence? Committee on Certifiably Dependable
Software Systems, National Research Council. National
Academic Press, Washington, DC. ISBN: 0-309-10857-8.

[9] Kahlon, V., Wang, C. and Gupta, A. Monotonic Partial Or-
der Reduction: An Optimal Symbolic Partial Order Reduc-
tion Technique. In Proceedings of the 21st International Con-
ference on Computer Aided Verification, Lecture Notes in
Computer Science 5643/2009 (Grenoble, France, June 26 –
July 2, 2009). CAV 2009.Springer, Berlin/Heidelberg, 398-
413. ISBN 978-3-642-02657-7.

[10] Kato, S. and Ishikawa, Y. Gang EDF Scheduling of Parallel
Task Systems. In Proceedings of the 2009 30th IEEE Real-
Time Systems Symposium (Washington, DC, USA, December
1 - 4, 2009)/ RTSS 2009. IEEE, Washington, DC, 459-468.
ISBN ~ ISSN:1052-8725 , 978-0-7695-3875-4.

[11] Klein, M., Moreno, G. A., Parkes, D. C., Plakosh, D., Seu-
ken, S., and Wallnau, K. Handling Interdependent Values in
an Auction Mechanism for Bandwidth Allocation in Tactical
Data Networks, In Proceedings of the 3rd international
Workshop on Economics of Networked Systems (Seattle,
WA, USA, August 22, 2008). NetEcon '08. ACM, New
York, NY, 73-78.

[12] Muccini, H., Bertolino, A. and Inverardi, P. Using Software
Architecture for Code Testing. IEEE Transactions on Soft-
ware Engineering 30, 3 (2004), 160-171.

[13] Muccini, H., Dias, M. and Richardson, D. Software architec-
ture-based regression testing. Journal of Systems and Soft-
ware 79, 10 (October 2006), 1379-1396.

[14] Musa, J. 2004. Software Reliability Engineering: More Reli-
able Software Faster and Cheaper 2nd Edition. Authorhouse,
Bloomington, IN. ISBN-13: 978-1418493882.

[15] Northrop, L. et al. 2006. Ultra-Large-Scale Systems: The
Software Challenge of the Future. Carnegie Mellon Univer-
sity, Software Engineering Institute, Pittsburgh, PA.

[16] Oikawa, S., Rajkumar, R. 1999. Portable RK: A Portable
Resource Kernel for Guaranteed and Enforced Timing Be-
havior. In Proceedings of the Fifth IEEE Real-Time Tech-
nology and Applications Symposium (Vancouver, Canada,
June 02 - 04, 1999) IEEE RTAS ’99. IEEE, Washington,
DC, 111-120. ISBN: 0-7695-0194-X.

262

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

