
Analytics for Software Development

Raymond P.L. Buse
∗

The University of Virginia
buse@cs.virginia.edu

Thomas Zimmermann
Microsoft Research

tzimmer@microsoft.com

ABSTRACT
Despite large volumes of data and many types of metrics,
software projects continue to be difficult to predict and risky
to conduct. In this paper we propose software analytics
which holds out the promise of helping the managers of
software projects turn their plentiful information resources,
produced readily by current tools, into insights they can act
on. We discuss how analytics works, why it’s a good fit for
software engineering, and the research problems that must
be overcome in order to realize its promise.

Categories and Subject Descriptors
D.2.9 [Management]

General Terms
management, human factors, measurement

Keywords
analytics, project management

1. INTRODUCTION
Software engineering is an exceedingly data rich activity.

Nearly every artifact of a project’s development, from code
repositories to testing frameworks to bug databases, can
be measured with a high degree of automation, efficiency,
and granularity. Projects can be measured throughout their
life-cycle: from specification to maintenance. The research
community has proposed numerous metrics and models for
complexity, maintainability, readability, failure propensity
and many other important aspects of software quality and
development process health (e.g., [7, 16]).

Nonetheless, software development continues to be risky
and unpredictable. It is not unusual for major development
efforts to experience large delays or failures [1]. Moreover,

∗Raymond Buse was an intern at Microsoft Research when
this paper was written.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

software defects cost the US economy many billions of dol-
lars each year [19].

Together, these observations imply that there continues
to be a substantial disconnect between (A) the information
needed by project managers to make good decisions and (B)
the information currently delivered by existing tools. At its
root, the problem is that the real-world information needs
of project managers are not well understood by the research
community. Indeed, research has largely ignored the needs of
managers and has instead focused on the information needs
of developers (e.g., [3, 14, 20]).

When data needs are not met, either because tools are
unavailable, too difficult to use, too difficult to interpret,
or they simply do not present useful or actionable infor-
mation, managers must primarily rely on past experience
and intuition for critical decision making. Such intuition-
based decisions can sometimes work out well, but often they
are unnecessarily suboptimal or even destructive [23]. As
software projects continue to grow in size and complexity,
decision making will likely only become more difficult.

The information-intensive nature of software engineering
coupled with other features which we will discuss later sug-
gests that a strong potential exists for software project man-
agement to make great use of analysis, data, and systematic
reasoning to make decisions. This data-centric style of deci-
sion making is known as analytics. The idea of analytics is
to leverage potentially large amounts of data into real and
actionable insights.

The concerted use of analytics has revolutionized decision
making across many fields [9]. Many in the technology com-
munity are probably familiar with web analytics [13]. Web
analytics leverages large volumes of click-stream data to help
website managers make informed decisions about many as-
pects of their business from advertising to content layout to
investment. Today, large websites not only thoroughly test
all proposed changes in the traditional sense, but they also
undertake detailed analytic experiments aimed to precisely
quantify the net benefit of any proposed change. Analytics
has had a profound effect on businesses ranging from tech-
nology to retail to financial.

We believe that analytics techniques hold great promise
for software development. Software, however, presents a
number of new challenges related both to the complexity
of the code itself, but also to the complexity of project man-
agement. In this paper we discuss a number of important
research challenges that must be met before analytics can
be successfully applied in this context.

First, we believe that software project management is

77

poorly understood. In Section 2, we advocate new in-depth
studies of the information needs of those who make critical
decisions in software projects. In order to assist managers,
it is critically important to first understand how they work:
What conditions do they look for? What actions can they
take?

Second, we need new and principled tools for data aggre-
gation and analysis suitable for use by project managers.
In Section 4 we discuss the limitations of current tools and
some of the possibilities for future ones.

Finally, in Section 5 we advocate changes to the develop-
ment management process itself. In particular, we propose
the position of software project analyst. Such a position
shares both the analytic skills and domain knowledge neces-
sary to execute powerful analyses beyond the scope of both
mangers and tools.

We begin by discussing the current understanding of project
management and why it remains insufficient to enable the
successful application of analytics to software development.

2. PROJECT MANAGEMENT
Software project management is a complex and broadly

defined position. Project managers monitor and guide the
work of some number of designers, developers and testers
of software while sometimes participating in these activities
themselves. Where engineers focus on code, architecture,
and performance, managers focus on high level concerns:
the direction of the project, allocation of resources and in
some cases details of the user experience, the feature set, the
way the product will get used. Managers work to simulta-
neously satisfy (potentially conflicting) constraints imposted
by customers, developers, testers, maintainers, and manage-
ment. Steven Sinofsky, a manager at Microsoft, notes that
“it is almost impossible to document a complete list of the
responsibilities of program managers” [22].

The complexity of the job of a project manager contributes
to the difficulty of designing and evaluating tools by the re-
search community. In particular, the information needs of
managers are not well understood. Boehm and Ross pro-
posed a theory of project management which included the
“top 10 primary sources of software project risk and the
most effective approaches for resolving them” [6]. While top
ten lists like this can be instructive, the problem is that the
management techniques presented (e.g., benchmarking, or-
ganization analysis, technical analysis, etc.) aren’t specific
enough to be useful. Many critical questions remain unan-
swered: Which of these can be performed automatically?
Which are most important? How should the results be pre-
sented? What decisions can they lead to? How does one
evaluate success?

More recently, in an effort to begin answering some of
these questions, Wallace et al. conducted a survey of 507
project managers [26]. Cluster analysis was used in an at-
tempt to identify risk factors in projects. That study found,
for example, that “even low risk projects have a high level of
complexity.” The study did not produce a practical answer
to the question of what software indicators managers should
be concerned with.

Komi-Sirvio et al. noted that software managers are typ-
ically too busy with their day-to-day duties to spend much
time performing measurement activities [15]. Typically data-
driven tasks are relegated to secondary work. We believe
that this should be changed. However, much more study is

What Happened?
{Reporting}

What is happening
now?

(Alerts)

What will happen?
(Forecasting)

How and why did it
happen?

(Factor Analysis)

What is the next
best action?

(Recommendation)

What is the best/
worst that can

happen?
(Modeling /
Simulation)

Past Present Future

Information

Insight

Trends, Defect
reports

Extrapolation
Engineering Activity,

Benchmarking,
Testing

Software quality
models, bottleneck

analysis

Failure Prediction
Models

Specification
refinement, asset

reallocation

Figure 1: Analytical Questions (adapted from [9]):
We distinguish between questions of information
which can be directly measured, from questions of
insight which arise from a careful analytic analysis
and provide managers with a basis for action.

needed for the research community is to understand project
managers well enough to pursue new process models and
tools for them in a principled way. In the next section we
describe how the application of analytics represents a means
of bridging the gap between managers and the data they
need to make informed decisions.

3. SOFTWARE ANALYTICS
Analytics can help answer important questions mangers

ask about their projects. The goal of analytics to assist
decision makers in extracting important information and in-
sights from data sets that would otherwise be hidden.

Figure 1, which we adapt from Davenport et al. [9], identi-
fies six question areas analytics can help answer organized by
time-frame and by information vs. insight. The idea is to dis-
tinguish questions of information which some tools already
provide (e.g., how many bugs are in the bug database?) from
questions of insight which provide managers with an under-
standing of a project’s dynamics and a basis on which to
make decisions (e.g., will the project be delayed?).

The overarching goal of analytics is to help managers move
beyond information and toward insight. However, such a
transition isn’t easy. Insight necessarily requires knowledge
of the domain coupled with the ability to identify patterns
involving multiple indicators. For example, to understand
why the number of bug reports is increasing and if it is a
concern, it’s important to understand what other activities
are occurring: Is the next release soon? Is the team working
on bug fixes or feature additions? Analytical techniques
can help managers quickly find important needles in massive
haystacks of data.

The rounded boxes in Figure 1 provide examples of how
analytics can fit well with traditional software engineering
metrics and concepts. In fact, software engineering has
many qualities that suggest a business process that lends
itself well to analytics:

78

• Data-rich. Analytics operates best when large amounts
of is data available for analysis.

• Labor intensive. Analytics enable leverage of exper-
tise especially where talent supply is short, demand is
cyclical, and training times are lengthy [9]. Software
engineering is especially labor intensive. Furthermore,
numerous studies have found an order of magnitude
productivity gap between developers including [5, 25].

• Timing dependent. Analytics can be helpful in cases
where business products must meet specific schedules;
analytics enable decision makers to look both upstream
and downstream.

• Dependent on consistency and control. Analyt-
ics help enable consistent decision making even under
unusual circumstances [9].

• Dependent on distributed decision making. An-
alytics can help decision makers understand the col-
lective state of projects even in the face of great geo-
graphic distribution. Many software projects feature
highly distributed development, especially in open source
projects.

• Low average success rate. Domains with a high
failure rate are the most likely to benefit from ana-
lytics. Software projects fail as much as 33% of the
time [1].

There are many potential advantages to application of
rigorous analytics use to software project management (in-
spired by [9]). Analytics can help mangers:

• Monitor a project. Analytics provides tools to help
managers understand the dynamics of a complex project.

• Know what’s really working. Analytics can help
evaluate the effectiveness of a change to the develop-
ment process. For example, it can measure whether
some effect is statistically significant.

• Improve efficiency. Techniques based on analyt-
ics can help mangers allocate resources and talent to
where it is most needed and recognize when under uti-
lization occurs.

• Manage risk. The effectiveness of risk models can be
improved with increases in the quantity and precision
of data. Analytics can provide both a data channel into
risk models and a vehicle for delivering the output of
such models in an intuitive way.

• Anticipate changes. Analytics can help managers
to detect and forecast trends in data.

• Evaluate past decisions. Logical and consistent de-
cision making based on data is much more amenable
to later review and assessment than decisions based on
intuition.

Analytics helps describe a reasoning framework which we’ve
observed has the potential to fit well with software engineer-
ing. However, to realize that potential it is obvious that
beyond studies, tool support is also necessary. In the next
section we discuss some of the tools that are currently avail-
able and why they are not yet sufficient for this task.

Measurements

Metrics

Models and Simulation

Qualitative
Analysis

Insights

What?

How much?

Why?

Goal

Figure 2: Paradigm of Analytics (adapted
from [13]): The role of the analyst is to compose
many types analyses to formulate more complete in-
sights.

4. ANALYTICS TOOLS
There are a number of existing tools designed to support

management. For example, PROM [21] and Hackystat [12]
are both capable of monitoring and reporting a great num-
ber of software project statistics. However, after seven and
ten years of development respectively, neither have seen sig-
nificant levels of adoption outside of academia [10]. One
explanation might be that these tools simply do not answer
the right questions [8]. Each of these tools focus primarily
on data collection, which while a challenging problem in of
itself is probably no longer the most critical concern.

More recent tools, which have focused on data presenta-
tion rather than collection have met with some adoption.
Microsoft’s Team Foundation Server and IBM’s Jazz de-
veloper environment [11], for example, provide dashboard
views designed to keep developers up-to-date on the sta-
tus of various events like modifications, bugs, and build re-
sults. However, a recent study concluded that while inte-
grated tooling of this type could help support the develop-
ment process, “the distinction between high-level and low-
level awareness is often unclear” [24].

While modern tools can present a large amount of data
from varied sources, most either focus on data collection or
on developer awareness; because they don’t have a good
model for the needs of real product managers, real product
managers do not generally use them.

Moreover, managers may be too busy or may simply lack
the quantitative skills or analytic expertise to fully lever-
age advanced analytical applications which may range from
trend analysis, classification algorithms, predictive model-
ing, statistical modeling, optimization and simulation, and
data- and text-mining [9]. One possibility is that tools
should be created with this in mind: that they are to be
consumed by managers with little expertise and great time
constraints. However, another intriguing possibility is the
addition of an analytic professional to the software develop-
ment team.

79

5. SOFTWARE ANALYSTS
An analyst is an expert in data creation, collection, in-

terpretation and use, but is also trained in the workings of
the business process in question. Consider Figure 2 which
we adapt from Kaushik [13]. In current practice, managers
sometimes glean sparse insights purely from measurements
or metrics. Other managers may rely primarily on qualita-
tive discussions. The role of the analyst is to use quantita-
tive skill and domain knowledge to combine many types of
quantitative and qualitative information and form the most
complete insights.

Software analysts could be enlisted to perform studies too
involved for managers or even for sophisticated tools. For
example, Bird et al. found that distributed development
did not appreciably effect software quality in the implemen-
tation of Windows Vista [4]. Another study by Mockus et
al. enumerated a set of metrics which may be highly pre-
dictive of defects [17]. An analyst could carry out similar
studies and prescribe corrective action based on the results.
Furthermore, many findings in software engineering research
depend on large numbers of context variables [2]. As such,
these findings may not generalize [18, 27]. A software an-
alyst is critical for determining which important results of-
fered by the research community apply to a specific project.

We believe that analysts could be trained as part of a Soft-
ware Engineering curriculum modified to emphasize quanti-
tative skills, or through a Master of Analytics program like
the one launched at North Carolina State University.1 Re-
search into software analytics as advocated by this paper
could constitute an invaluable guide for study in this area.

6. CONCLUSION
All resources, especially talent, are always constrained.

This alludes to the importance of careful and deliberate de-
cision making by the managers of software projects. The
observation that software projects continue to be risky and
unpredictable despite being highly measurable implies that
more analytic information should be leveraged toward deci-
sion making. In this paper, we described how software ana-
lytics can help managers move from low-level measurements
to high-level insights about complex projects. We advocated
more research into the information needs and decision pro-
cess of managers in order that we might build new tools ca-
pable of meeting those needs and revealing information on
which managers can make better decisions. Finally, we dis-
cussed how the complexity of software development suggests
that dedicated analytic professionals with both quantitative
skills and domain knowledge might provide great benefit to
future projects.

7. REFERENCES
[1] T. Addison and S. Vallabh. Controlling software project

risks: an empirical study of methods used by experienced
project managers. In SAICSIT ’02, pages 128–140, 2002.

[2] V. R. Basili, F. Shull, and F. Lanubile. Building knowledge
through families of experiments. IEEE Transactions on
Software Engineering, 25:456–473, 1999.

[3] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson.
Fastdash: a visual dashboard for fostering awareness in
software teams. In CHI ’07, pages 1313–1322, 2007.

[4] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and
B. Murphy. Does distributed development affect software

1http://analytics.ncsu.edu

quality?: an empirical case study of windows vista.
Commun. ACM, 52(8):85–93, 2009.

[5] B. Boehm. Software Cost Estimation with Cocomo II.
Addison Wesley, Boston, MA, 2000.

[6] B. Boehm and R. Ross. Theory-w software project
management principles and examples. IEEE TSE,
15(7):902 –916, jul 1989.

[7] R. P. L. Buse and W. R. Weimer. A metric for software
readability. In International Symposium on Software
Testing and Analysis, pages 121–130, 2008.

[8] I. D. Coman, A. Sillitti, and G. Succi. A case-study on
using an automated in-process software engineering
measurement and analysis system in an industrial
environment. In ICSE ’09, pages 89–99, 2009.

[9] T. Davenport, J. Harris, and R. Morison. Analytics at
Work. Harvard Business School Publishing Corporation,
Boston, MA, 2010.

[10] G. Gousios and D. Spinellis. Alitheia core: An extensible
software quality monitoring platform. In ICSE ’09, pages
579–582, 2009.

[11] IBM Corporation. Jazz.
http://www.ibm.com/software/rational/jazz/.

[12] P. Johnson, H. Kou, M. Paulding, Q. Zhang, A. Kagawa,
and T. Yamashita. Improving software development
management through software project telemetry. IEEE
Software, 22(4):76 – 85, july-aug. 2005.

[13] A. Kaushik. Web Analytics 2.0. Wiley Publishing, 2010.

[14] A. J. Ko, R. DeLine, and G. Venolia. Information needs in
collocated software development teams. In ICSE’07:
Proceedings of the International Conference on Software
Engineering, pages 344–353, 2007.

[15] S. Komi-Sirvi, P. Parviainen, and J. Ronkainen.
Measurement automation: Methodological background and
practical solutions-a multiple case study. In IEEE
International Symposium on Software Metrics, page 306,
2001.

[16] T. J. McCabe. A complexity measure. IEEE Trans.
Software Eng., 2(4):308–320, 1976.

[17] A. Mockus, P. Zhang, and P. L. Li. Predictors of customer
perceived software quality. In ICSE ’05, 225–233, 2005.

[18] I. Myrtveit, E. Stensrud, and M. Shepperd. Reliability and
validity in comparative studies of software prediction
models. IEEE Trans. Softw. Eng., 31(5):380–391, 2005.

[19] National Institute of Standards and Technology. The
economic impacts of inadequate infrastructure for software
testing. Technical Report 02-3, Research Triangle Institute,
May 2002.

[20] J. Sillito, G. C. Murphy, and K. De Volder. Questions
programmers ask during software evolution tasks. In
SIGSOFT ’06/FSE-14, pages 23–34, 2006.

[21] A. Sillitti, A. Janes, G. Succi, and T. Vernazza. Collecting,
integrating and analyzing software metrics and personal
software process data. In EUROMICRO, page 336, 2003.

[22] S. Sinofsky. Steven sinofsky’s microsoft techtalk / pm at
microsoft. http://blogs.msdn.com/b/techtalk/archive/
2005/12/16/504872.aspx, Dec. 2005.

[23] L. Strigini. Limiting the dangers of intuitive decision
making. IEEE Software, 13:101–103, 1996.

[24] C. Treude and M.-A. Storey. Awareness 2.0: staying aware
of projects, developers and tasks using dashboards and
feeds. In ICSE ’10, pages 365–374, 2010.

[25] J. D. Valett and F. E. McGarry. A summary of software
measurement experiences in the software engineering
laboratory. Journal of Systems and Software, 9(2):137 –
148, 1989.

[26] L. Wallace, M. Keil, and A. Rai. Understanding software
project risk: a cluster analysis. Inf. Manage.,
42(1):115–125, 2004.

[27] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and
B. Murphy. Cross-project defect prediction. In Symposium
on the Foundations of Software Engineering, August 2009.

80

