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Design must be THE development product

• Successful Software Systems have Long Lives
– Fundamental Issue: how to enhance them, not to build them!
– Key Idea: Must not forget DESIGN:  specification, architecture, rationale

• … and yet, we always do …    -->  reverse engineering business

• Require design update to be on path to obtain code
– Costs must not seriously hinder engineering
– Must provide significant value during development/maintenance

• Must be mechanically processable
– Enables Automation in Validation and Generation

• Issue:  What is a Design?
– Structure that can answer most questions about product

What?  [purpose] How? [implemented]  Why? [that method]
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Research Required
(and in varying degrees of progress at SD)

• Concrete answers to "What is a design"?
• Specification Methods:  Problem domains, technologies

– How to specify performance:  how well

• Combining Specifications of different styles
– Different domains, different semantics/logics

• Validating Partially implemented Specifications
• Design capture while engineering

– For individuals and concurrent teams

• Means for specifying changes
• Automated support for Design revision driven by change

– Modularity: via interfaces or algebraic properties

• Making this scale to large software systems!
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The Design Maintenance System vision
• Transformational Designs

• Functionality Spec (f0) + Performance Spec (Grest)
+ Derivation + Justification + Alternatives

• Scale
• Metaprogram driven automation
• Incremental Updates

• Specification & Technology  ∆s
• ∆s drive design revision:

retain transforms that commute with delta
• Domain-based specification/implementation

• Simplify expression of problem
• Store implementation knowledge with domain

• PARLANSE: Parallel foundation of DMS
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