
1© 2001, Semantic Designs, Inc. SDP’2001

Breaking
the Software Development Roadblock:

Continuous Software Enhancement
By Design Maintenance

Ira Baxter
Dec 13, 2001

Workshop on New Visions for Software Design and Productivity:

Research and Applications

2© 2001, Semantic Designs, Inc. SDP’2001

Design must be THE development product

• Successful Software Systems have Long Lives
– Fundamental Issue: how to enhance them, not to build them!
– Key Idea: Must not forget DESIGN: specification, architecture, rationale

• … and yet, we always do … --> reverse engineering business

• Require design update to be on path to obtain code
– Costs must not seriously hinder engineering
– Must provide significant value during development/maintenance

• Must be mechanically processable
– Enables Automation in Validation and Generation

• Issue: What is a Design?
– Structure that can answer most questions about product

What? [purpose] How? [implemented] Why? [that method]

3© 2001, Semantic Designs, Inc. SDP’2001

Research Required
(and in varying degrees of progress at SD)

• Concrete answers to "What is a design"?
• Specification Methods: Problem domains, technologies

– How to specify performance: how well

• Combining Specifications of different styles
– Different domains, different semantics/logics

• Validating Partially implemented Specifications
• Design capture while engineering

– For individuals and concurrent teams

• Means for specifying changes
• Automated support for Design revision driven by change

– Modularity: via interfaces or algebraic properties

• Making this scale to large software systems!

4© 2001, Semantic Designs, Inc. SDP’2001

The Design Maintenance System vision
• Transformational Designs

• Functionality Spec (f0) + Performance Spec (Grest)
+ Derivation + Justification + Alternatives

• Scale
• Metaprogram driven automation
• Incremental Updates

• Specification & Technology ∆s
• ∆s drive design revision:

retain transforms that commute with delta
• Domain-based specification/implementation

• Simplify expression of problem
• Store implementation knowledge with domain

• PARLANSE: Parallel foundation of DMS

Or

And

And

Seq

Seq

Seq

And

And

Apply
C1

Apply
C2

Apply
C3

Apply
C4

Apply
C5

Apply
C6

Apply
C7

Or

O(n log n)

C++

D

e

r

i

v

a

t

i

o

n

H

i

s

t

o

r

y

O(n log n)
/\ C++

∆@p(Ci @q(fi))=

Ci @q’(∆’@p’(fi))

Ci@q

∆@p

Ci@q’

∆’@p’

fi+1'

G4

G3

G1

Grest

G2

G9

G6

G7

G5

f 0

f 1

f 2

f 3

f 4

f 5

f 6

f G

fi fi'

fi+1

∆

