Magellan Status Report
A Test Bed to Explore Cloud Computing for Science

Susan Coghlan (Argonne)
Shane Canon (Berkeley Lab)

May 17, 2011
Outline

• Overview of the Magellan Project
• Overview of Cloud Computing
• Overview of the distributed Testbed
• Lines of Inquiry (early findings)
• Conclusions
Co-located at two DOE-SC Facilities

- Argonne Leadership Computing Facility (ALCF)
- National Energy Research Scientific Computing Center (NERSC)
- Funded by DOE under the American Recovery and Reinvestment Act (ARRA)
Magellan Scope

• Mission
 – Determine the appropriate role for private cloud computing for DOE/SC midrange workloads

• Approach
 – Deploy a test bed to investigate the use of cloud computing for mid-range scientific computing
 – Evaluate the effectiveness of cloud computing models for a wide spectrum of DOE/SC applications
Magellan Timeline

<table>
<thead>
<tr>
<th>Activity</th>
<th>Argonne</th>
<th>NERSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Start</td>
<td></td>
<td>Sep 2009</td>
</tr>
<tr>
<td>User Access</td>
<td>Mar 2010 (Cloud)</td>
<td>April 2010 (Cluster)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oct 2010 (Cloud)</td>
</tr>
<tr>
<td>Acceptance</td>
<td>Feb 2010</td>
<td>May 2010</td>
</tr>
<tr>
<td>Hadoop User Access</td>
<td>Dec 2010</td>
<td>May 2010</td>
</tr>
<tr>
<td>Joint Demo (MG-RAST)</td>
<td></td>
<td>June 2010</td>
</tr>
<tr>
<td>Nimbus Deployed</td>
<td>Jun 2010</td>
<td>N/A</td>
</tr>
<tr>
<td>OpenStack Deployed</td>
<td>Dec 2010</td>
<td>N/A</td>
</tr>
<tr>
<td>Eucalyptus 2.0 Deployed</td>
<td>Jan 2011</td>
<td>Feb 2011</td>
</tr>
<tr>
<td>ANI research projects on</td>
<td></td>
<td>Apr 2011 – Dec 2011</td>
</tr>
<tr>
<td>Magellan cloud ends</td>
<td></td>
<td>Sep 2011</td>
</tr>
<tr>
<td>ANI 100G active</td>
<td></td>
<td>Oct 2011</td>
</tr>
<tr>
<td>Magellan ANI ends</td>
<td></td>
<td>Dec 2011</td>
</tr>
</tbody>
</table>
What is a Cloud?
Definition

According to the National Institute of Standards & Technology (NIST)...

• **Resource pooling.** Computing resources are pooled to serve multiple consumers.
• **Broad network access.** Capabilities are available over the network.
• **Measured Service.** Resource usage is monitored and reported for transparency.
• **Rapid elasticity.** Capabilities can be rapidly scaled out and in (pay-as-you-go)
• **On-demand self-service.** Consumers can provision capabilities automatically.
What is a cloud?

Cloud Models

<table>
<thead>
<tr>
<th>Hardware focus</th>
<th>Software focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure as a Service (IaaS)</td>
<td>Platform as a Service (PaaS)</td>
</tr>
<tr>
<td>Provisions processing, storage, networks, and other fundamental computing resources. Consumer can deploy and run arbitrary software, including OS.</td>
<td>Provides programming languages and tools. Consumer applications created with provider’s tools.</td>
</tr>
<tr>
<td>• Amazon EC2</td>
<td>• Microsoft Azure</td>
</tr>
<tr>
<td>• RackSpace</td>
<td>• Google AppEngine</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Opaque infrastructure
- Capacity >> Demand
- Available for rent
- Self-service
Magellan Distributed Testbed
Distributed Testbed Summary

• Compute
 – IBM iDataPlex: 504 nodes at Argonne and 720 nodes at NERSC

• Storage
 – Mix of disk storage, archival storage, and two classes of flash storage

• Architected for flexibility and to support research
 – Similar to high-end hardware in HPC clusters
 – Suitable for scientific applications
 – Included some specialized hardware such as GPUs
Argonne Magellan Hardware

Compute Servers
504 Compute Servers
 - Nehalem Dual quad-core 2.66GHz
 - 24GB RAM, 500GB Disk
Totals
 - 4032 Cores, 40TF Peak
 - 12TB Memory, 250TB Disk

Active Storage Servers
200 Compute/Storage Nodes
 - 40TB SSD Storage
 - 9.6TB Memory
 - 1.6PB SATA Storage

Big Memory Servers
15 Servers
 - 15TB Memory, 15TB Disk

GPU Servers
133 GPU Servers
 - 8.5TB Memory, 133TB Disk
 - 266 Nvidia 2070 GPU cards

File Servers
 - (8) (/home) 160TB

Gateway Nodes
 - (16)

ESNet
 - 10Gb/s

ANI
 - 100 Gb/s Future

QDR InfiniBand

Router

Aggregation Switch
NERSC Magellan Hardware

Compute Servers
- 720 Compute Servers
 - Nehalem Dual quad-core 2.66GHz
 - 24GB RAM, 500GB Disk
- Totals
 - 5760 Cores, 40TF Peak
 - 21TB Memory, 400 TB Disk

Flash Storage Servers
- 10 Compute/Storage Nodes
 - 8TB High-Performance FLASH
 - 20 GB/s Bandwidth

Big Memory Servers
- 2 Servers
 - 2TB Memory

Archival Storage

Global Storage (GPFS)
- 1 PB

ESNet
- 10Gb/s

ANI
- 100 Gb/s

Future

QDR InfiniBand

IO Nodes (9)

Mgt Nodes (2)

Gateway Nodes (27)

Aggregation Switch

Router

NERSC

U.S. DEPARTMENT OF ENERGY

Office of Science

Early Findings
Based on progress to date
Magellan Research Agenda and Lines of Inquiry

- Are the open source cloud software stacks ready for DOE HPC science?
- Can DOE cyber security requirements be met within a cloud?
- Are the new cloud programming models useful for scientific computing?
- Can DOE HPC applications run efficiently in the cloud? What applications are suitable for clouds?
- How usable are cloud environments for scientific applications?
- When is it cost effective to run DOE HPC science in a cloud?
- What are the ramifications for data intensive computing?
Cloud Software Stacks

Are the *open source* cloud software stacks ready for DOE HPC science?

• **DOE HPC cluster software stacks**
 – Mature
 – Stable
 – Scalable
 – Depth and breath in tool availability
 – Integrated I/O
 – High performance

• **What about the IaaS cloud software stacks?**
Cloud Software Stacks
Evaluation Process

- Evaluated the top *open source* cloud software stacks
 - All but one were deployed on Magellan
 - OpenNebula evaluation was based on staff code analysis and documentation review as well as evaluations run at CERN and Fermi
 - Evaluation done by staff + special users
 - Test suite with stress tests, scaling tests, etc.
 - Code analysis, documentation review
 - Scientific users running regular workloads and stress test workloads
Cloud Software Stacks
Evaluation Criteria

• Evaluation criteria included
 – Feature Set
 – Stability
 – Infrastructure Scalability
 – Usability
 – Manageability
 – Sustainability

• Evaluation did not include performance
 – Except to note I/O performance challenges
<table>
<thead>
<tr>
<th>Evaluation Area</th>
<th>Eucalyptus 1.6.2</th>
<th>Eucalyptus 2.0</th>
<th>OpenStack</th>
<th>Nimbus</th>
<th>OpenNebula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature Set</td>
<td>Red</td>
<td>Green</td>
<td>External</td>
<td>External</td>
<td>External</td>
</tr>
<tr>
<td>Stability</td>
<td>Red</td>
<td>Green</td>
<td>External</td>
<td>External</td>
<td>External</td>
</tr>
<tr>
<td>Infrastructure Scalability</td>
<td>Red</td>
<td>Yellow</td>
<td>Green</td>
<td>External</td>
<td>External</td>
</tr>
<tr>
<td>Usability</td>
<td>Yellow</td>
<td>Green</td>
<td>External</td>
<td>External</td>
<td>External</td>
</tr>
<tr>
<td>Manageability</td>
<td>Red</td>
<td>Yellow</td>
<td>Green</td>
<td>External</td>
<td>External</td>
</tr>
<tr>
<td>Sustainability</td>
<td>Red</td>
<td>Yellow</td>
<td>Green</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Early Findings:

- Significant improvements in stability and scaling in past year
 - Not production ready yet
- Accounting, monitoring, logging, debugging not at necessary levels
- Networking is complicated and challenging to get right
 - Current architecture bottlenecks performance and scalability

Next Steps:

- Scalability – implement highly distributed infrastructure, integrate new data storage and retrieval module
- Performance – utilize Infiniband for I/O and distributed infrastructure
- Features – provide Infiniband access to users
DOE Cyber Security in the Cloud

Can DOE cyber security requirements be met within a cloud?

- Current cyber security frameworks, architectures and mitigating controls were developed for onsite traditional HPC cluster installations
- Some parallels between clusters and clouds
- But cloud systems provide unique challenges beyond the traditional HPC clusters
 - These require new approaches
- Biggest cyber security risks are with the IaaS cloud model
 - Much of this work was required to deploy the testbeds
IaaS Cyber Security Overview

DOE Private Cloud

<table>
<thead>
<tr>
<th>Defined Risk Areas</th>
<th>Defined Threats</th>
<th>Defined Mitigations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Definition and Management</td>
<td>• User owned, managed, shared Virtual Machine Images (VMI).</td>
<td>• DOE provides secured and approved machine images as a base for user customization.</td>
</tr>
<tr>
<td></td>
<td>• Malicious images shared with users.</td>
<td>• DOE audits user supplied images</td>
</tr>
<tr>
<td></td>
<td>• Encrypted VMIs are opaque to sites</td>
<td></td>
</tr>
<tr>
<td>System Instance Configuration Management</td>
<td>• Users with no system administration experience with full root privileges.</td>
<td>• User education for cyber sec and system administration best practices</td>
</tr>
<tr>
<td></td>
<td>• Relying on users to comply with cyber security best practices and DOE cyber security requirements</td>
<td>• Limit root access for users</td>
</tr>
<tr>
<td></td>
<td>• System level audit data disappears with exit of instance</td>
<td>• Limited system and network based auditing for intrusion and anomaly detection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Develop forensic analysis tools</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Develop auditing tools for VMs</td>
</tr>
<tr>
<td>Network Authorization and Management</td>
<td>• Users manage the firewall conduits for their machines.</td>
<td>• File and system integrity tools and network access controls implemented to prevent virtual machine cross-talk</td>
</tr>
<tr>
<td></td>
<td>• Potential malicious network activity generated by/from virtual machine instances.</td>
<td>• Constant scanning for bad accounts, bad passwords, open ports</td>
</tr>
</tbody>
</table>
Cyber Security
Early Findings and Next Steps

Early Findings:
• Trust issues
 • User provided VMIs uploaded and shared
 • Root privileges by untrained users opens the door for mistakes
• Network separation is complicated
 • Due to the ephemeral nature of virtual machine instances, an effective Intrusion Detection System (IDS) strategy challenging
• Fundamental threats are the same, security controls are different

Next Steps:
• Can hypervisors play new roles in security monitoring and auditing?
• What sort of forensic analysis could be done on virtual machine instances?
Are the new cloud programming models useful for scientific computing?

- Platform as a Service models have appeared that provide their own Model
 - Parallel processing of large data sets
 - Examples include Hadoop and Azure

- Common constructs
 - MapReduce: map and reduce functions
 - Queues, Tabular Storage, Blob storage
• Bioinformatics using MapReduce
 – Researchers at the Joint Genome Institute have developed over 12 applications written in Hadoop and Pig
 – Constructing end-to-end pipeline to perform gene-centric data analysis of large metagenome data sets
 – Complex operations that generate parallel execution can be described in a few dozen lines of Pig
Programming Models Evaluating Hadoop for Science

- Benchmarks such as Teragen and Terasort
 - Evaluation of different file systems and storage options
- Ported applications to use Hadoop Streaming
 - Bioinformatics, Climate100 data analysis
Programming Models
Early Findings and Next Steps

Early Findings:
• New models are useful for addressing data intensive computing
• Hides complexity of fault tolerance
• High-level languages can improve productivity
• Challenge in casting algorithms and data formats into the new model

Next Steps:
• Evaluate scaling of Hadoop and HDFS
• Evaluate Hadoop with alternate file systems
• Identify other applications that can benefit from these programming models
Can DOE HPC applications run efficiently in the cloud? What applications are suitable for clouds?

• Can parallel applications run effectively in virtualized environments?
• How critical are high-performance interconnects that are available in current HPC systems?
• Are some applications better suited than others?
Application Performance
Application Benchmarks

Runtime relative to Carver

MILC PARATEC

Carver
Franklin
Lawrencium
EC2-Beta-Opt
Amazon EC2
Application Performance Application Scaling

PARATEC

- TCPoIB
- TCPoEth
- AmazonCC

MILC

- TCPoIB
- TCPoEth
- AmazonCC

Performance relative to native (IB) vs. Number of cores
Application Performance
Early Findings and Next Steps

Early Findings:

- Benchmarking efforts demonstrate the importance of high-performance networks to tightly coupled applications
- Commercial offerings optimized for web applications are poorly suited for even small (64 core) MPI applications

Next Steps:

- Analyze price-performance in the cloud compared with traditional HPC centers
- Analyze workload characteristics for applications running on various mid-range systems
- Examine how performance compares at larger scales
- Gathering additional data running in commercial clouds
User Experience

How usable are cloud environments for scientific applications?

• How difficult is it to port applications to Cloud environments?
• How should users manage their data and workflow?
User Experience

User Community

- Magellan has a broad set of users
 - Various domains and projects (MG-RAST, JGI, STAR, LIGO, ATLAS, Energy+)
 - Various workflow styles (serial, parallel) and requirements
 - Recruiting new projects to run on cloud environments
- Three use cases discussed today
 - MG-RAST - Deep Soil sequencing
 - STAR – Streamed real-time data analysis
 - Joint Genome Institute
Background: Genome sequencing of two soil samples pulled from two plots at the Rothamsted Research Center in the UK.

Goal: Understand impact of long-term plant influence (rhizosphere) on microbial community composition and function.

Used: 150 nodes for one week to perform one run (1/30 of work planned)

Observations: MG-RAST application is well suited to clouds. User was already familiar with the Cloud
Details

- STAR performed Real-time analysis of data coming from RHIC at BNL
- First time data was analyzed in real-time to a high degree
- Leveraged existing OS image from NERSC system
- Used 20 8-core instances to keep pace with data from the detector
- STAR is pleased with the results
User Experience
JGI on Magellan

• Magellan resources made available to JGI to facilitate disaster recovery efforts
 – Used up to 120 nodes
 – Linked sites over layer-2 bridge across ESnet SDN link
 – Manual provisioning took ~1 week including learning curve
 – Operation was transparent to JGI users
• Practical demonstration of HaaS
 – Reserve capacity can be quickly provisioned (but automation is highly desirable)
 – Magellan + ESnet were able to support remote departmental mission computing
User Experience

Early Findings and Next Steps

Early Findings:
• IaaS clouds can require significant system administration expertise and can be difficult to debug due to lack of tools.
• Image creation and management are a challenge
• I/O performance is poor
• Workflow and data management are problematic and time consuming
• Projects were eventually successful, simplifying further use of cloud computing

Next Steps:
• Gather additional use cases
• Deploy fully configured virtual clusters
• Explore other models to deliver customized environments
• Improve tools to simplify deploying private virtual clusters
Conclusions
Cloud Potential

• Enables rapid prototyping at a larger scale than the desktop without the time consuming requirement for an allocation and account
 – DOE cyber security requirements may block this benefit
• Supports tailored software stacks
• Supports different levels of service
• Supports surge computing
• Facilitates resource pooling
 – But DOE HPC clusters are frequently saturated
Conclusions

Cloud Challenges

• Open source cloud software stacks are still immature, but evolving rapidly
• Current MPI-based application performance can be poor even at small scales due to interconnect
• Cloud programming models can be difficult to apply to legacy applications
• New security mechanisms and potentially policies are required for ensuring security in the cloud
Conclusions

Next Steps

• Characterize mid-range applications for suitability to cloud model
• Cost analysis of cloud computing for different workloads
• Finish performance analysis including IO performance in cloud environments
• Support the Advanced Networking Initiative (ANI) research projects
• Final Magellan Project report
Thank you!

Contact Info:
Shane Canon
Scanon@lbl.gov
magellan.nersc.gov

Susan Coghlan
smc@alcf.anl.gov
magellancloud.org