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Abbreviations

Al artificial intelligence

BD big data and Big Data NITRD IWG

CANDLE  CANCcer Distributed Learning Environment
FPGA field-programmable gate arrays
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DOE Department of Energy

FPGA field-programmable gate array

GPU graphic processing unit

HEC High-End Computing (NITRD IWG)

HPC high performance computing

IWG Interagency Working Group

ML machine learning

NCI National Cancer Institute

NIH National Institute of Health

NITRD Networking and Information Technology Research and Development (Program)

B terabyte
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Background

The high performance computing (HPC) and big data (BD) communities traditionally have pursued
independent trajectories in the world of computational science. HPC has been synonymous with
modeling and simulation, and BD with ingesting and analyzing data from diverse sources, including
from simulations. However, both communities are evolving in response to changing user needs and
advancing technological landscapes. Researchers are increasingly using machine learning (ML) not only
for data analytics but also for modeling and simulation; science-based simulations are increasingly
relying on embedded ML models not only to interpret results from massive data outputs but also to
steer computations. Science-based models are being combined with data-driven models to represent
complex systems and phenomena. There also is an increasing need for real-time data analytics, which
requires large-scale computations to be performed closer to the data and data infrastructures, to adapt
to HPC-like modes of operation. For example, in tactical mission support, where data comes from many
different sources and the computational environment is varied and geographically distributed, new
capabilities would include improved situational awareness and decision-making techniques such as
imagery analysis to extract useful information from raw data; increased operating safety for aircraft,
ships, and vehicles in complex, rapidly changing environments; and predictive maintenance and supply
chain operations to predict the failure of critical parts, automate diagnostics, and plan maintenance
based on data and equipment condition. This and other use cases create a vital need for HPC and BD
systems to deal with simulations and data analytics in a more unified fashion.

To explore this need, the NITRD Big Data and High-End Computing R&D Interagency Working Groups
held a workshop, The Convergence of High Performance Computing, Big Data, and Machine Learning,
on October 29-30, 2018, in Bethesda, Maryland. The purposes of the workshop were to bring together
representatives from the public, private, and academic sectors to share their knowledge and insights
on integrating HPC, BD, and ML systems and approaches and to identify key research challenges and
opportunities. Workshop participants represented a balanced cross-section of stakeholders involved
in or impacted by this area of research. The workshop agenda, list of attendees, webcast, and other
details are available at https://www.nitrd.gov/nitrdgroups/index.php?title=HPC-BD-Convergence.

Key Takeaways

There are four key takeaways from the joint workshop on the convergence of HPC, BD, and ML:

e Datais growing at an unprecedented rate, and science demands are driving the convergence of
HPC, BD, and ML. Itis not unusual to see petabytes of data being generated from one experimental
instantiation. Data generation is no longer the research bottleneck it once was; it is now data
management, analysis, and reasoning that are the bottlenecks.

e Therewill beincreased heterogeneity in future systems—including specialized processors such as
graphics processing units (GPUs) and field-programmable gate arrays (FPGAs)—as the
performance improvements provided by semiconductor scaling diminish. Systems will need to be
flexible and have low latency at all levels to effectively support new use cases. In addition, new
tools and benchmarks will be needed to understand the common issues across simulation (HPC),
big data, and ML applications, because there is little reliable data available at present.

e The computing ecosystems of tomorrow will not look like the computing ecosystems of today.
Future computing will likely involve combinations of edge, cloud, and high performance computing.
To make this a seamless ecosystem, new programming paradigms,' language compilers, and

! In this document, the term “programming” is not limited to hand-coding but is meant to reflect all levels,
including auto-code development that will result in flexible, low defect software.
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operating and runtime systems will be needed to provide new abstractions and services. “Smart
computing at the edge,” which involves intelligent data collection or data triage at the edge of the
network (near the source of the data), is expected to become increasingly important.

e More collaboration between the HPC, BD, and ML communities is needed for rapid and efficient
progress toward an ecosystem that effectively serves all three communities. While convergence
of data analytics and HPC-based simulation has seen some progress, the software ecosystems
supporting the HPC and BD communities remain distinctly different from one another, mainly due
to technical and organizational differences.

Event Summary

The workshop began with an overview of the current landscape and use cases, which was followed by
panel sessions and break-out discussions on the challenges and opportunitiesin three different aspects
of convergence: hardware, modes of operation, and software. The four workshop sessions are

summarized below.

Current Landscape, Use Cases or
Applications, and Challenges

This session explored use cases from a
variety of domains and applications to
illustrate the current landscape, including
what is currently possible and what new
opportunities  could emerge  with
convergence. Presentations highlighted the
pervasiveness and unprecedented scale of
data being generated and illustrated that
convergence is already underway. (See also
two recent convergence examples noted in
the sidebar and referenced attachments at
the end of this document.)

The session presentations showed that
researchers are working together closely to
build predictive models that both integrate
a variety of experimental data and rely on
ML to help steer new simulations and
experiments. This form of convergence
enables researchers to have a more dynamic
view of domain sciences and optimize
solutions with a significant reduction in
compute requirements. However, there are
several overarching challenges for
convergence of HPC, BD, and ML:

Federal Collaborative Exascale HPC-BD-ML Projects

One example of HPC-BD-ML convergence is the
Department of Energy (DOE) and National Institutes of
Health (NIH) collaboration for the National Cancer
Institute’s Cancer Distributed Learning Environment
(CANDLE). CANDLE focuses on bringing together data
from three major challenge areas (molecular, drug
response, and treatment strategy) to improve cancer
patient outcomes. Each area involves distinct teams
of experts using diverse forms of data at different
scales, models, and simulations. The goal is to build a
“single scalable deep neural network code that can be
used to address all three challenges.”” For more
details on CANDLE, please see Attachment A.

Another convergence example is the DOE-industry-
university collaboration Exascale Deep Learning (DL)
for Climate Analytics, whereresearchers from multiple
organizations used DOE’s Summit supercomputing
system to identify extreme weather patterns using a
trained DL model. HPC resources are essential for
handling the extreme data sizes and complexity in this
application. For more details on this project, please
see Attachment B.

e Access to highly curated data and compute resources. Although data is being generated at an
unprecedented scale, there is a growing need for sound data management. Big data cannot be
exploited for ML without well-curated, tagged datasets. Academia cannot keep pace with the

2 https://candle.cels.anl.gov/
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rapid advances made by industry without well-curated “gold standard” datasets and the scales
of computing and hardware necessary to perform these computations.

Skilled workforce teams. A converged HPC-BD-ML environment inherently requires using
collaborative research teams of domain scientists, data scientists, and software engineers. Many
domain scientists are unfamiliar with the new integrated technologies and require a team that
includes software engineers and data scientists. This represents a shift from the traditional
domain-based research teams consisting only of principal investigators and their graduate
students; it also presents a new career path for data scientists and software engineers.

Scientific reproducibility. Publication of scientific results should include the data and the software
that support the results so that other scientists can evaluate the rigor of an experiment design
and the quality of data results, as well as be better able to reproduce results as a basis for further
research. With convergence comes the opportunity to reexamine and improve current processes
to make reproducibility a reality.

Hardware Opportunities and Challenges

This session examined the various aspects of hardware convergence. Discussions highlighted the fact
that both simulation and data analytics depend on the ability of computer systems to perform dense
linear algebra efficiently. Because systems are designed not for specific application areas but instead
for data structures and methods, some aspects of integration are not as difficult as previously
imagined. Evidence to support this includes machines that presently support simulation, data
analytics, and ML projects, such as DOE’s Summit® and the National Science Foundation-funded Blue
Waters* and Frontera® supercomputers. Despite this, there are performance issues that need to be
addressed as hardware becomes more heterogeneous and flexible in response to changing user needs.

Major hardware challenges for achieving convergenceinclude:

Interconnect efficiency at all levels: More efficient interconnects are needed to facilitate better
performance across nodes, including intra-node, inter-node, fabric, and inter-fabric. This is
critical for large-scale applications. Today’s hardware options are not efficient when off-node
operations are required.

Innovative tools and common end-to-end benchmark suites: Tools are needed to enable better
understanding of compute workloads, performance, and bottlenecks to ensure effective and
useful converged systems. There are no well-researched data, only anecdotes, to help identify
common bottlenecks across simulation, big data, and ML applications.

Power efficiency: The needs of the commercial sector will likely drive evolutionary approaches to
improve power efficiency. However, work is needed to develop innovative fine-grain power-
efficiency techniques—distinct from evolutionary steps—for both processers and memory.
Integrated memory: Both simulation and data analytics are memory-bound, and research is
needed for innovations in integrating memory and processing.

Scalable file systems: HPC currently relies on file systems that do not scale well for new
applications such as ML. Research is needed to identify or develop file system technologies that
are effective for both HPC and BD.

3 https://www.olcf.ornl.gov/summit/

4 http://www.ncsa.illinois.edu/enabling/bluewaters

5 https://www.tacc.utexas.edu/research-development/tacc-projects/frontera
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e Reliable networking: There is a need for a low-cost, end-to-end wide area network that is reliable
and more fully automated.

e Balanced hardware development: As specialized hardware such as GPUs and FPGAs are being
employed to improve performance—particularly for applications involving machine learning and
deep learning (DL)*—there is a need to balance R&D on different hardware aspects such as input
and output, latency and bandwidth, memory-type, and the heterogeneity of the processor(s).

Modes of Operation Opportunities and Challenges

As noted above, new instrumentation, enormous data rates, and ever-increasing computing platform
complexity are driving new computational use cases and requirements. This session explored the
different modes of operation resulting from applications at the convergence of HPC, BD, and ML.
Discussions highlighted that large-scale experiments, which have traditionally relied on local
computing for data processing, are increasingly turning to HPC to produce timely results. Likewise,
some ML or DL applications require HPC-scale resources for the training phases. Simulations are also
reaching a scale and complexity such that a single application can take the form of a complex workflow
of tasks and could benefit from using ML to automate those workloads. In addition, increased use of
smart computing at the edge presents a use case where HPC, simulation, data analytics, and ML
convergein the workflow across a distributed infrastructure.

Major challenges regarding modes of operation include:

e Scalable tools and capabilities for ML and large-scale data analysis: Large-scale complex
simulations rely on scalable numerical libraries and software that have been optimized over
recent decades. Innovations are needed to address the new world of ML and large-scale data
analysis and may require changes in the underlying software stack.

e New user training and support: New users, whether from large-scale experiments or large-scale
ML, are driving new HPC workloads. Services are needed to meet their needs, including support
for a new and diverse set of software packages that are critical to their applications. In addition,
more intuitive interfaces are needed for users who are not familiar with running applications at
scale orinterfacing with large-scale computing resources.

e New tools and services for data: Until recently, the HPC community has focused on simulation data
and data management services local to the HPC centers. But with the data-driven nature of many
ofthe new convergence applications, additional tools and services are needed for large-scale data
management, curation, retention, and access.

e Well-managed end-to-end solutions: Whether complex simulations requiring embedded ML or
complex distributed workflows, new applications will benefit from well-managed end-to-end
solutions that reduce complexity and include reliable and elastic systems.

Software Opportunities and Challenges

This session explored the software stack and related convergence challenges and opportunities.
Discussions revealed that the HPC community has embraced data analytics and that recent HPC systems
are well equipped to combine the predictive capabilities of simulation with the analytic and optimization
capabilities of machine learning. With the recent adoption of deep neural networks for machine
learning, data analysis now has computational characteristics of traditional HPC workloads. Both HPC

¢ In layman’s terms, machine learning refers to being able to train a computer to perform certain tasks without
being explicitly programmed. DL is a type of machine learning where pattern recognition using stacked neural
networks is used. Neural networks are modeled after the human brain using sensors and several layers of nodes.
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and data analytic systems are adopting the use of accelerators such as GPUs to improve the performance
of individual computing nodes, and this trend will continue as a response to the limited gains of scaling.

Major challenges regarding software include:

e System design: At the system level, there is a significant gap between how HPC systems are
designed (tightly coupled collections of homogeneous nodes) versus BD systems (based on cloud
computing data center architectures that consist of large numbers of loosely coupled and
possibly heterogeneous computing nodes). These structural differences, in turn, have led to a split
in the software stack that is both technological and cultural. The HPC stack relies on tools
developed in government laboratories and academia. In contrast, the BD stackis much larger and
more varied and is often driven by open-source projects, with the main contributors being
commercial entities.

e Edge Computing, or smart computing at the edge: This was identified as a rapidly emerging key
area—one requiring new abstractions, concepts, and tools, including the software architecture,
runtime systems, and perhaps even new programming languages. The emerging combination of
edge, cloud, and HPC will require software that makes these environments easier to program,
debug, optimize, and interoperate in many future application areas.

e System management: Regardless of whether the computingis HPC or BD, launching massive jobs
will require support to reduce job launch latency, monitor jobs in real time, and handle runtime
node and other failures.

e Common libraries: Most domain scientists and BD users do not have the expertise to handle the
complexities of emerging hardware. Having a common set of libraries would allow nonexperts to
more easily use the systems, leaving the programming of these devices to experts.

Conclusion

The NITRD joint BD-HEC IWG workshop explored challenges and opportunities for convergence of HPC,
BD, and ML. From the presentations and discussions, a vision emerged of a rich computational
ecosystem consisting of heterogeneous combinations of edge, cloud, and high performance computing
systems. This ecosystem would be flexible and be able to receive data from a variety of sources such as
scientific and medicalinstruments, sensor networks, and security and infrastructure monitoring systems.
It would have edge Internet of Things devices that would extractimportant features and convert datainto
forms suitable for ingesting and storing in the cloud. Large-scale data analytics would run in the cloud,
combining ingested data with stored databases. HPC systems would perform more computationally
intensive forms of analysis and optimization, as well as run simulations for predictive modeling.

Such a rich computing environment could provide capabilities well beyond those of today’s isolated
systems. For biomedical and clinical research and healthcare, it would enable the use of clinical,
laboratory, and even molecular data for patients and for researchers. Data sources could include smart
health applications where patient outcomes are connected to an evidence-based computed model,
thereby putting data as a “digital first” asset in the healthcare system. The computing environment
would allow scientific and medical researchers to solve problems with many degrees of freedom in
ways that allow data to inform models and simulations to build better models.

Achieving this vision of a rich computing ecosystem will require new capabilities in hardware
(computing, network, and storage); management modes of operation; and software. Providing true
convergence among current and future computing environments presents many technical and
organization challenges, but it could provide capabilities in scientific research, national security,
healthcare, and industry well beyond what is possible today.
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Attachments
A: CANDLE: Exascale Deep Learning & Simulation-Enabled Precision Medicine for Cancer

CANDLE (CANcer Distributed Learning Environment) is an exascale computing project whose goal is to
enable the most challenging deep learning problems in cancer research to run on the most capable
supercomputers of the Department of Energy (DOE) and the National Institute of Health (NIH). It is
designed to support three top challenges of the National Cancer Institute (NCI): understanding the
molecular biology of key protein interactions, developing predictive models for drug response, and
automating the analysis and extraction of information from millions of cancer patient records to
determine optimal cancer treatment strategies.

By tackling these exemplar cancer problems, CANDLE is building a core set of cross-cutting
technologies aimed at addressing common challenges at the convergence of HPC, big data, and
artificial intelligence (Al) in science. For example, data processing and feature selection methods
implemented in CANDLE allow experimental and derived datasets of multiple modalities to be
harmonized and integrated in a machine learning framework. Representation learning methods in
CANDLE compress very large input spaces such as raw simulation states into low dimensional
representations that capture their scientific essence. Such encoded representations are then used to
steer simulation, provide synthetic validation data, and guide the acquisition of new experimental
samples in cancer research workflows.

CANDLE also aims to accelerate the many stages of DL workflows writ large, including feature
engineering, parallel training, weight sharing in model populations, architectural search,
hyperparameter optimization, and large-scale inference with uncertainty quantification. To accelerate
large-scale model search experiments, ensembles, and uncertainty quantification, CANDLE features a
set of DL benchmarks. These benchmarks are aimed at solving a problem associated with each of the
cancer challenge problems, embody different DL approaches to problems in cancer biology, and are
implemented in compliance with CANDLE standards. Combined, these techniques will support the
application of DL to more scientific domains and prepare them for existing HPC resources and
forthcoming DOE exascale platforms.

Implementations of CANDLE have been deployed on the DOE HPC systems Titan and Summit at Oak
Ridge National Laboratory, Theta at Argonne National Laboratory, and Cori at the National Energy
Research Scientific Computing Center at Lawrence Berkeley National Laboratory, as well as on the NIH
Biowulf system. CANDLE computations use the full scale of these machines, using many thousands of
nodes in parallel, requiring tens of terabytes (TBs) of input/training data, and producing many TBs of
output data to analyze. In some cases, training data is harvested from petabytes of simulation data.

CANDLE software builds on open source DL frameworks and the project engages in collaborations with
DOE computing centers, HPC vendors, and the DOE Exascale Computing Project (ECP) to both leverage
and drive new advances in HPC software. Future release plans call for supporting experimental design,
model acceleration, uncertainty-guided inference, network architecture search, synthetic data
generation, and data modality conversion, as well as expanding into more scientific domain research
areas.

For more details, see https://candle.cels.anl.gov/.
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Attachment B: Exascale Deep Learning for Climate Analytics

In 2018, researchers from the DOE National Energy Research Scientific Computing Center at Lawrence
Berkeley National Laboratory, a leading American technology company, the DOE Leadership
Computing Facility at Oak Ridge National Laboratory (ORNL), and a leading American university
achieved a major breakthrough when they successfully scaled a deep learning application on the DOE
Summit supercomputing system at ORNL using 27,360 GPUs. The team developed an innovative
convolutional segmentation architecture to automatically extract pixel-level masks of extreme weather
patterns such as tropical cyclones and atmospheric rivers, thus enabling the climate science
community to characterize the frequency and intensity of such events in the future. This project was
awarded the prestigious Gordon Bell Prize at the Supercomputing 2018 conference.

The project overcame a number of technical challenges, most prominently in the area of storage and
data management where the general parallel file system was unable to sustain the data and metadata
rates required. HPC resources were essential for handling the extreme data sizes and complex learned
network inherent in this climate application. The team processed a 20 TB climate dataset on 4560
Summit nodes, obtaining 1.13 Exaflops/second (EF/s) peak, and 0.999 EF/s sustained performance in
half-precision mode.

The research team anticipates the co-design of future HPC systems to better support read-dominated
Al workloads. Future DL frameworks will need to support optimized ingest pipelines for scientific
datasets, supporting hybrid modes of data and model parallelism, and innovative methods for ensuring
convergence at extreme scales.

For more details, see the paper from the IEEE Supercomputing 2018 conference proceedings, “Exascale
Deep Learning for Climate Analytics” (Thorsten Kurth et al.): https://arxiv.org/pdf/1810.01993.pdf.



https://arxiv.org/pdf/1810.01993.pdf
https://arxiv.org/pdf/1810.01993.pdf

	Cover: The Convergence of High Performance Computing, Big Data, and Machine Learning: Summary of the October 29-30, 2018, Workshop
	About this Report and its Authoring Bodies, and Copyright Information
	Abbreviations
	Background 
	Key Takeaways
	Event Summary 
	Current Landscape, Use Cases or Applications, and Challenges
	Hardware Opportunities and Challenges
	Modes of Operation Opportunities and Challenges
	Software Opportunities and Challenges

	Conclusion 
	Attachments
	A: CANDLE: Exascale Deep Learning & Simulation-Enabled Precision Medicine for Cancer
	Attachment B: Exascale Deep Learning for Climate Analytics




