
HIGH CONFIDENCE SOFTWARE AND SYSTEMS

RESEARCH NEEDS

High Confidence Software and Systems Coordinating Group

Interagency Working Group on Information Technology
Research and Development

January 10, 2001



The HCSS National Research Agenda is dedicated to the memory of Andy Arenth of the
National Security Agency, who served as the Working Group's Co-Chair from 1998-
1999. Andy skillfully energized and guided the group in establishing a unified vision of
the end goal. His contributions and leadership are gratefully acknowledged and will be
sorely missed.



HCSS RESEARCH NEEDS

TABLE OF CONTENTS

EXECUTIVE SUMMARY

INTRODUCTION ES1
STRATEGIC GOALS ES3
TECHNOLOGY GOALS ES3
RESEARCH COMPONENTS   ES4
HCSS STRATEGIC OVERVIEW (table) ES7

HCSS RESEARCH NEEDS

PART I: HCSS FOUNDATIONS 1

1.1 THEORY 2
Status 2
Needed Research 3
Benefits 5

1.2 SPECIFICATION 6
Status 6
Needed Research 6
Benefits 7

1.3 INTEROPERABILITY 7
Status 8
Needed Research 8
Benefits 9

1.4 COMPOSITION AND DECOMPOSITION 9
Status 9
Needed Research 10
Benefit 11

PART II: HCSS TOOLS AND TECHNIQUES 12

2.1 PROGRAMMING LANGUAGES, TOOLS, AND ENVIRONMENTS 12
Status  12
Needed Research 14
Benefits 15

2.2 MODELING AND SIMULATION 15
Status 16
Needed Research 16



Benefit 17

2.3 HCSS BUILDING BLOCKS 17
Status 17
Needed Research 18
Benefit 18

2.2 ROBUST SYSTEM DESIGN 18
Status 19
Needed Research 19
Benefit 20

2.5 MONITORING, DETECTION, AND ADAPTIVE RESPONSE 20
Status 21
Needed Research 21
Benefits 22

2.6 VALIDATION
Status 23
Needed Research 24
Benefits 24

2.7 EVIDENCE AND METRICS 24
Status 25
Needed Research 26
Benefits 26

2.8 PROCESS  26
Status 26
Needed Research 27
Benefit 27

PART III: HCSS ENGINEERING AND EXPERIMENTATION 28

3.1 SOFTWARE CONTROL OF PHYSICAL SYSTEMS 28
Status 28
Needed Research 29
Benefit 29

3.2 HARDWARE AND SOFTWARE PLATFORMS 29
Status 29
Needed Research 31
Benefits 31

3.3 HIGH MOBILITY SYSTEMS 31
Status 31
Needed Research 32
Benefits 32

PART IV: HCSS DEMONSTRATIONS AND PILOTS 33



HCSS Research Needs ES 1 1/10/01
Executive Summary

HCSS RESEARCH NEEDS: EXECUTIVE SUMMARY

Introduction

This White Paper presents a survey of
high confidence software and systems
research needs. It has been prepared by the
High Confidence Software and Systems
Coordinating Group (HCSS CG) of the
Interagency Working Group in Information
Technology Research and Development
(IWG/IT R&D). The IWG, which functions
under the White House National  Science
and Technology Council, coordinates
Federal multiagency IT R&D efforts. The
HCSS CG agencies are: DARPA, NASA,
NIH, NIST, NSA, NSF, and OSD/URI.

A high confidence system is one that
behaves in a well-understood and
predictable fashion. It must withstand
malicious attacks as well as naturally
occurring hazards, and must not cause or
contribute to accidents or unacceptable
losses. The HCSS research described in this
White Paper focuses on the critical basic
science and information technologies
necessary to achieve predictably high levels
of performance, system safety, security,
reliability, and survivability. Security-
critical and safety-critical systems (i.e.,
high-consequence systems) exist in the
domains of transportation, health care,
electric power generation, manufacturing,
oil and gas production, chemical production,
and financial services, as well as in law
enforcement, emergency services, and
national defense.

While high confidence systems have
been built in these and other domains for
many years, a number of interrelated trends
in technology, system requirements, and

economics are creating a new environment
that challenges the limits of traditional
engineering approaches, drawing attention
to the need for a radical new approach.

Technology Trends:

•  Increasing reliance on software for
critical functions

•  Increasing reliance on a commodity
technology base

•  Increasing interconnectivity among
disparate systems, products and
services

Requirements Trends:

•  Increasing complexity of products
and services

•  Increasing scale with respect to
number of concurrent users

•  Increasing stress due to higher
performance demands

•  Increasing exposure to potential
compromise due to internal and
external access to communications
and computing resources, which
adds security to other system
requirements

Economic Trends:

•  Accelerating product and service
development cycles due to market
pressures

•  Expanding developer base of high
consequence systems to include non-
experts in HCSS techniques

Accompanying these trends are issues
and problems associated with both the
need and the capability to achieve high



HCSS Research Needs ES 2 1/10/01
Executive Summary

confidence, all of which provide
compelling and urgent reasons to pursue
this research now. Among them are:

•  Achieving high confidence is
becoming more difficult as systems
become more complex. Today’s
trends towards widespread use of
commercial off-the-shelf (COTS)
technology, increased integration,
continuous evolution, and larger
scale are yielding more complex
systems.

•  New analysis techniques are urgently
needed. Simple forms of analysis
previously used to achieve high
confidence are at their limits for
today’s complex and continuously
evolving systems. For example, the
assumption that concerns are
separated by composing components
does not account for cross-cutting
(e.g. timing) properties in complex
systems. These limitations of
assurance technology will not allow
us to continue to make progress at
the levels of integration currently
planned. The implications are that
complex systems will become less
safe and assured without new
computer aided analytic tools to
assist in addressing the design,
analysis and validation of these
systems

•  The U.S. is not alone in its growing
dependence on computing in
industries producing safety-critical
products/systems. This is especially
true in transportation, health care,
energy, and manufacturing sectors.
Europe and Japan are investing
heavily in  assurance and
dependability technology because
they have recognized the need, and
the US must also in order not to fall
behind.

•  Lacking adequate protection, today’s
information and communications
systems will almost certainly become
the target of numerous malicious
attacks and inappropriate access
attempts. New and advanced
techniques are required to achieve
the necessary system security.
Protection against both external and
insider threats must be developed,
including mechanisms for data
protection and for system
monitoring, detection, response, and
recovery.

The HCSS research described in this
White Paper addresses these urgent needs.
This research seeks to make the
development of high confidence systems
less costly while achieving higher quality
and providing an enabling capability for
unforeseen applications and opportunities. It
will narrow the gap between expected and
delivered dependability as embedded and
information systems become ubiquitous.

The primary outcome of this research
will be technologies for building predictably
safe, reliable, dependable, secure, and
survivable computing and communications
systems that can enable a world radically
different and much improved from today’s
reality. These improvements are essential to
systems providing for the national security
and general welfare of the public, and to
meet growing performance and capacity
goals of Federal agencies. Systems that use
HCSS technologies will be more resistant to
failure and malicious manipulation; will
respond rapidly to damage or perceived
threat by adaptation or reconfiguration; and
will be safer, better protected, and more
dependable. Such an achievement is
necessary if Federal agencies are to
accomplish many of the performance and
capacity goals contained in their long-range
strategic plans and move closer toward their



HCSS Research Needs ES 3 1/10/01
Executive Summary

visions of the future through information
technology.

Strategic Goals

This HCSS research embodies four
strategic goals that reflect the
responsibilities of the Federal government.
Pursuing this research will support the
Government's role in protecting the welfare
of both the public and the individual
consumer, and will promote cost and quality
improvements in the provision of
Government services and the effectiveness
of national security.

Protect the Public. This strategic goal
focuses on the Federal government's
responsibility to protect the public's safety,
health, economic welfare, and security. The
government must assure the Nation's critical
infrastructure services upon which
individual citizens depend. To meet this
strategic goal, the Federal government must
promote technologies that can increase
confidence in the safety, reliability,
trustworthiness, security, timeliness, and
survivability of systems such as
transportation systems and communications
systems.

Protect the Consumer. This strategic
goal focuses on enabling higher reliability,
safety, and ease-of-use in commercial
products. It envisions cost-effective means
to gain assurance that enables commercial
products to meet certain minimum quality
standards. Results sought include expedited
quality certification, validation, and
verification; shortened times to market;
simplicity of use; plug-and-play
interconnection; lower lifecycle costs; and
improved customer satisfaction. Confidence
is needed in consumer products and
services. Such products could include
“smart” cars, medical devices, consumer
electronics, business systems, smart houses,

sensor technologies, Global Positioning
System (GPS) receivers, smart cards,
educational technologies, electronic
commerce software packages, educational
technologies, and digital libraries.

Promote Improved Government
Services. This strategic goal focuses on the
Federal government's continual obligation to
provide improved services to the public.
Improved government services include
ubiquitous, correct, and timely service.
These services must become increasingly
efficient and use appropriate technologies to
help lower the cost of service delivery.
HCSS technologies will support the Federal
government's modernization efforts that will
allow the Government to deliver better
service to the public at significantly lower
costs.

Promote National Security. This
strategic goal focuses on the Federal
government's responsibility to protect the
security interests of our Nation. The
Government must protect the Nation's
critical infrastructures upon which the
Nation's economic health and security
depend. It must also protect military systems
that are used to defend our national interests.
National security will require defense-in-
depth protection services and assurance that
those services will perform as required. For
example, National air defense systems that
protect against incoming missiles and launch
defensive missiles are extremely complex
and require very high assurance against
malfunction and malicious attack.

Technology Goals

Five technology goals must be met
through this research to achieve the HCSS
strategic goals:

Provide a sound theoretical, scientific,
and technological basis for assured



HCSS Research Needs ES 4 1/10/01
Executive Summary

construction of safe, secure systems. T o
meet this goal, the research must:

•  Achieve the capability to specify,
design, and integrate components,
and assess system behavioral
properties including potential modes
of failures

•  Provide the capability to enforce
specific behavioral properties such as
performance and throughput

•  Be more predictably tolerant of
specified behavioral failures
including malicious at tack
m e c h a n i s m s  w i t h  graceful
degradation and limitation of
services

Develop hardware, software, and system
engineering tools that incorporate
ubiquitous, application-based, domain-
based, and risk-based assurance. To meet
this goal the HCSS research must:

•  Provide methods, tools, and
environments for the seamless
design, construction, and evaluation
of software and systems operational
properties

•  Provide high confidence systems
software and behavioral enforcement
mechanisms

•  Develop better indicators of overall
system reliability that can be
achieved through the application of
such methods ,  tools  and
environments

Reduce the effort, time, and cost of
assurance and quality certification
processes. To meet this goal, this HCSS
research must:

•  Improve the productivity of
information system design,
development, and analysis while
simultaneously improving the

levels of confidence that can be
ach ieved  th rough  such
productivity enhancements

•  Provide better technology for
validation and verification

•  Explore information from better-
integrated design, development
and assurance activity

•  Move from dependence on
testing to a comprehensive
analytic framework

Provide a technology base of public
domain, advanced-prototype imple-
mentations of high-confidence technologies
to enable rapid adoption. To meet this goal,
this HCSS research needs to develop
reference implementations to illustrate
innovative HCSS methods and techniques.
This includes system software components
and assurance tools, libraries of reusable
software implementing verified algorithms
and mathematics components, and
transition.

Provide measures of results. To meet
this goal, HCSS research must develop
measures of performance and effectiveness
for evaluating confidence improvement
achieved through HCSS technologies.
Further, it must show that the benefits
achieved are cost effective.

Table ES-1 at the end of this Executive
Summary provides a strategic overview of
this HCSS research.

Research Components

The HCSS research described in this
White Paper has four organizational
components:

•  An HCSS Foundations component
devoted to developing the supporting



HCSS Research Needs ES 5 1/10/01
Executive Summary

theory and scientific base for high
confidence systems.

•  An HCSS Tools and Technologies
component to apply the foundations
of HCSS in engineering technology.
Tools, techniques, systems software,
and associated libraries will provide
the engineering framework required
to design, build, and certify large-
scale systems.

•  A research component devoted to
H C S S  E n g i n e er i n g  a n d
Experimentation with HCSS tools
and technologies that will provide
mature reference implementations,
scalable proofs-of-concept, reusable
tools and techniques, and empirical
evidence on HCSS capabilities and
limitations.

•  A research component devoted to
Demonstrations and Pilot Projects to
apply HCSS technologies to specific
user problem domains.

HCSS Foundations (providing the
science to build high confidence systems).
To achieve high confidence in our future
systems, we must first know how, and then
provide the technological means to build
them. The HCSS foundations component
addresses the first of these needs by
advancing the scientific basis for designing
systems that require critical properties such
as security, safety, and reliability.

Research to be pursued under this
component includes:

•  Theory

•  Specification

•  Interoperability of formal
reasoning techniques and HCSS
tools

•  Composition/ Decomposition

HCSS Tools and Technologies
(providing the means to build HCSS
systems). Applying the foundational
research to building high confidence in our
future systems, we must next provide the
means to build such systems. This research
component will develop the technology
capability (tools, techniques, and supporting
component libraries) for sound engineering
practices that can apply the theoretical
foundations of high confidence to the
construction of critical systems. Within this
component of the research effort, the
following research areas will be pursued:

•  Programming Languages, Tools,
and Environments

•  Modeling and Simulation

•  HCSS Building Blocks

•  Robust System Design

•  Monitoring and Detection

•  Validation

•  Evidence and Metrics

•  Process

These elements must work together
collectively (interoperate) in order to
support reasoning about high confidence
software and systems properties through all
phases of development from early design
and specification to implementation and
validation.

HCSS Engineering & Experimentation
(showing that high confidence systems can
be built). The tools and techniques that need
to be built must be shown to work efficiently
and effectively at realistic industrial scales.
The benefits to be derived from this research
include empirical data that demonstrates
increased confidence can be achieved in a
cost-effective manner. This component will
apply emergent foundational and technology
capabilities to challenging areas of system
engineering to provide both mature HCSS



HCSS Research Needs ES 6 1/10/01
Executive Summary

reference implementations and the empirical
evalutation of HCSS engineering
capabilities and limitations. Potential system
engineering challenges for pursuit under this
component include:

•  Software Control of Physical
Systems

•  High Mobility Systems

•  Integrated Hardware Design
Environment

HCSS Demonstrations and Pilots
(transitioning HCSS technologies to user-
agency and commercial domains). Pilot
projects will provide a context for all the
other components. This component will
ensure demonstration and evaluation of
HCSS technology research in real systems
and at realistic scale. From engineering
experience, it is known that techniques that
work on small examples will often not work
for large, real-world problems. It is critical
that high confidence techniques be validated
on real systems from the outset to make sure
that the research is addressing the right
problems.



HCSS Research Needs 7 3/21/01
Executive Summary

Table ES-1. HCSS Strategic Overview

Technology Goals Implementation Strategy Research Component

Provide a sound, theoretical,
and technological basis for
assured construction of safe,
secure systems

•  Develop supporting theory and
scientific base for HCSS

HCSS Foundations

Develop hardware, software,
and system engineering tools
that incorporate ubiquitous,
application-based, domain-
based, and risk-based
assurance

•  Develop tools, technologies, and
libraries to design and build
large-scale systems

HCSS Tools and Techniques

Reduce the effort, time, and
cost of assurance and quality
certification processes

•  Deploy an HCSS engineering
technology

HCSS Engineering &
Experimentation

Provide a technology base of
public domain, advanced-
prototype implementations of
HCSS technologies to enable
rapid adoption

•  Develop mature reference
implementations, scalable
proofs-of-concept, and
reusable tools, libraries, and
techniques

•  Conduct experiments in
challenging areas of system
engineering

HCSS Engineering &
Experimentation

Provide measures of progress •  Develop and apply measures of
performance and measures of
effectiveness

HCSS Demonstrations &
Pilots



HCSS Research Needs 8 3/21/01
Executive Summary



HCSS Research Needs 1 1/10/01

HCSS RESEARCH NEEDS



HCSS Research Needs 2 1/10/01

PART1:  HCSS FOUNDATIONS

1.1  THEORY

Our notions of high confidence systems are being altered and considerably broadened
because of the pervasive role of information products and systems in our lives.  We rely in
unexpected ways upon the correctness and integrity of computing systems, and increasingly our
privacy, safety, and well-being depend upon them.  Engineering disciplines must have a solid
theoretical foundation.  Systems that merit high confidence require a theoretical basis for
designing and reasoning about them and for evaluating the trust that we place in them.

Status

The risks associated with large, interconnected networks and complex systems are  strikingly
apparent.  Research of the past several decades has not resolved difficult problems such as
complexity, scale, and system interaction.  Early attempts towards developing theoretical
foundations for security and safety have not proved sufficient as a basis for repeatably building
safe and secure systems.  Current research efforts often pursue a patchwork approach,
developing isolated components to address individual concerns; they do not provide fundamental
scientific and engineering underpinnings.  The consequences can be seen in the area of security,
where cryptography, network management, public key infrastructure, intrusion detection and
response methods were developed largely independently and fail to provide a systematic basis
for engineering secure systems.  The case is similar in the area of safety.  Isolated techniques
exist for computer-aided control design, fault tolerant computation, real-time scheduling,
reliability estimation, and criticality analysis for potential failure modes and effects, but these
techniques are not integrated, and there are many gaps.  For example, they do not adequately
address cognitively complex human roles or the adaptive systems increasingly enabled by the
power and flexibility of software.  The dependability consequences of moving from highly-
interactive, human-controlled systems to autonomous or highly-automated systems are not well-
understood.

A disturbing lack of theory exists to ground useful assurance technology and practice.  We
currently depend on naïve metrics derived from hardware wear and fatigue models and on
process-based scrutiny of design activities for certification. Useful concepts such as fault tree
analysis and failure modes, and effects criticality analysis currently are used, but they are not
composable and are easily defeated by the state space explosion that results when subsystems are
combined.  The consequence is a nearly complete dependence on testing that drives up the cost
of software certification and often results in incomplete coverage of system failure conditions.
Breakthroughs in scalable model checking have produced dramatic improvements in high-
confidence computer chip design, but their application to software, and complex, networked
systems remains largely undeveloped.  Other promising formal verification approaches suffer
from inattention to principles of usability, performance, algorithmic complexity, and scale.



HCSS Research Needs 3 1/10/01

Analysis plays a very minor role and does not provide effective validation and verification of
complex embedded and networked systems.  The emergence of ubiquitous computation and
pervasive embedded device technology will magnify this problem.  Enabling advances in device
and software technology, operating systems, and networks may be revolutionized in the future by
research in areas such as biological and quantum computation.  Unless we can provide better
foundations for high confidence development and certification, these gaps in safety, security, and
assurance will widen rapidly and will increase the likelihood and frequency of both inconvenient
and catastrophic system failures.

Needed Research

A new effort to create the science necessary to repeatably construct high confidence systems
is needed.   Fundamental issues exist in reasoning about concurrency, context-sensitivity, and
interference.  New research is needed to develop the theories, models, and representations for
symbolic and numeric reasoning about system dependability and trust; for analyzing both the
structure and behavior of software and systems; for considering the effects in the physical world
of system actions controlled by software; for decomposing and allocating requirements and
software; and for composing assurance in tandem with subsystems combined into systems.  New
research is needed to examine these issues, both from the specific perspectives of safety and
security, but also in the multidisciplinary integration of these perspectives, where many common
issues and strategies can be found.

Modeling and Reasoning.  The added time and effort required to model systems as well as
build them has proved a strong disincentive to using modeling in software and even system
design.  Research in design representations should add core support for modeling key system
properties in order to move the discovery of design flaws earlier in development, reduce total
effort, and enable more effective system acceptability and certification review (“validation and
verification”) than exists today.  Research into abstraction and model reduction must help tame
complexity and make analyses tractable for reasoning about high confidence system designs.
Abstraction should be exploited to mechanically assist the derivation of models of different
properties, and a sound understanding of abstraction must support valid connections between
concrete and abstract models.  A theory of abstraction should also support reasoning at different,
and possibly multiple simultaneous levels of abstraction, and should enable selective focus on
different properties.

The mathematical foundations for verification require renewed effort if this technology is to
have routine application in future high confidence systems.  Past research in formal methods and
verification yielded numerous successful applications, especially in hardware and protocol
verification.  However, much greater capability and flexibility will be required for the
verification of complex, software-centric, interconnected systems.  New mathematical modeling
frameworks and fast decision procedures are needed for reasoning about continuous and discrete
time processes.  Hybrid system descriptions are needed to relate continuous physical processes to
discrete events, transition systems, and software logic.  Numerous key research areas remain
underdeveloped and unexploited that could improve modeling and analysis for designing and
certifying high confidence software and systems.  These include: probabilistic methods and
stochastic approaches for modeling uncertainty; better-integrated formal and informal methods;
domain-specific theories, models, and analysis; and reasoning support for critical operational



HCSS Research Needs 4 1/10/01

systems.  Examples of these systems include free flight support in future air traffic management
systems or complex medical devices such as anesthesiology systems, medical imaging and
radiation treatment systems.

Operating Systems and Middleware.  This research will develop foundations for high
confidence development of system software.  Operating systems and middleware provide the
services upon which most high confidence systems will be built.   They encapsulate functionality
and protection that would be difficult and wasteful to re-implement in repeated, ad hoc
development.  Their stability and high level of use yields high payoff for any assurance effort.
This research seeks predictable, safe, and timely performance for all levels of operating system
capability including composable support for pervasively embedded devices.  The shift from strict
layering in operating systems to tailored composition of distributed systems services reveals an
expanded space of fundamental problems such as configuration control, guaranteed timing, and
adaptive module reuse, where high confidence methods will be required to achieve predictable
qualities of service.  The use of distributed object technology and micro-protocols present new
opportunities but also new challenges for the development of high confidence systems.  Object-
oriented design and programming has simplified and improved software development and
maintenance, but foundations are needed for verifying and validating object-oriented operating
systems and middleware frameworks.

Networking.  New paradigms must be developed for operation and management of
networked systems to provide transparent protection, better adaptation to changing
environments, assured availability of critical services, timing and performance guarantees, and
protection against disruption through naturally-occurring events or malicious attack.  New
foundations must also be developed for networking to support real-time applications and deeply
embedded systems of devices.

Central to all network technology is the design of communications and management
protocols.  Improved theories for the design and analysis of networking protocols are crucial to
predictable, robust network performance of control area networks, and predictable services for
wireless and mobile communications.  Demand for high-performance networking calls for
investigation into high-speed technologies, novel encryption device structures, and system
architecture. Rapidly emerging optical networking technology raises the priority of research into
timing and reliability, vulnerabilities, and protection for optical communications.   New
approaches must determine how to monitor and assess the health of networks and respond to
stress conditions such as overload.  New technologies such as active networks potentially can be
exploited to achieve high confidence as well as new functionality.  Foundations must be
established for assuring, evaluating the robustness of, and extending information protection
domain techniques such as virtual private networks (VPNs).  Many of these issues lie at the
intersection of research in scalable information infrastructure and high confidence software and
systems and can be addressed jointly.

Security.  In the security domain, research in public key cryptography has helped to advance
the development of electronic commerce, but there are numerous problems that hinder wider
adoption of this cryptographic technology.  Problems associated with extremely large-scale key
distribution, certificate management, and interoperability each require fundamental advances.
The inability of traditional cryptographic systems to perform efficiently or in real-time
applications, operate flexibly in diverse environments, and withstand novel attacks all point to



HCSS Research Needs 5 1/10/01

the need for improved mathematical underpinnings.  Revolutionary technologies such as
quantum cryptography offer the potential to provide “theoretically sound” security protection,
but this technology is in its infancy and requires additional work.  Even less mature is the
mathematics research needed to thwart potentially devastating attacks postulated from quantum
computing technology.   Other security needs include:  secure access control and process
separation primitives; control of information flow across system boundaries; code validation
techniques including runtime methods to determine code safety and restrict execution; secure
implementation of cryptography algorithms and systems to prevent inference of keys and secure
group communications protocols; advanced authentication technologies including PKI for
attribute-based authentication; and mechanisms for managing and enforcing authorized actions.

Safety.  In the safety domain, fundamental research is needed in safety properties of complex
systems.  Better foundations are needed for routine engineering for safety-critical problems,
including:  scalable modeling and reasoning for failure modes and effects, allocation of
functionality to guarantee resources to critical functions and provide failure isolation, more
precise methods for reasoning about the propagation of criticality due to component interaction
and interference.  Analysis methods need to be developed that can be easily tailored to specific
domains for reasoning about safety-critical operational policies and protocols.  Research should
be expanded in implementation mechanisms such as safety kernels, to monitor, constrain, and
enforce sequences of safety-critical actions.  New software development methods are needed that
support systems engineering goals and assure safety criteria, including technology support for
systematic introduction into functional software of code to manage safety-critical properties.
Examples include:  concurrency, computation order, time, synchronization, fault tolerance.
Development is needed of high confidence middleware services that both implement and support
safe invocation of computational patterns such as pipelines, time-triggered execution, event-
based reactive execution, and publish-subscribe.  Better foundations are also needed for
certification practice, including approaches for “forensic” analysis of software and systems in
validation and verification.  Rapid formulation of exploratory analyses might, for example,
exploit game-theoretic scenarios for product-based V&V and certification.  In cooperation with
human computer interaction and information management research, new failure models and
analytical techniques must be developed to aid in reasoning about software and human computer
interaction.  Such foundations would help design interactions that do not induce mode confusion
or other sources of human error, and help detect vulnerabilities related to human operation.
Better foundations are also needed for managing risk, skill, and command authority that must
shared by both human operators and system automation in mixed-initiative systems.

Benefits

This research will provide sound theoretical underpinnings for the development of the
technologies required for next-generation high confidence systems. It will provide the means to
organize and discipline tool and technology development. It will yield new models for reasoning
and critically needed domain theories that can be used to create more rigorous development
environments. With such a foundation, we will be increasingly able to design advanced
information systems with more assurance that the problems of complexity, scale, and interactions
are adequately and appropriately handled.



HCSS Research Needs 6 1/10/01

1.2  SPECIFICATION

Specification is the process of describing a system and its desired properties. The system
properties specified might include internal structure, functional behavior, timing behavior, and
performance characteristics (e.g., resource consumption). Formal specification is the act of
writing things down precisely. Formal specification uses a language with a mathematically
defined syntax and semantics. It removes ambiguity associated with other means of expression,
and it is specified with sufficient precision to be machine-processed. Thus it can form the basis
for automated reasoning (for example, to discover whether it meets system requirements, or
whether it contains certain types of errors). With rigorous semantics, a specification may be used
to convey a system’s requirements for high confidence, support simulator and correct-by-
construction code generation, generate criteria to prove that these requirements have been
satisfied, and serve as a reference for validating that these requirements are being addressed
during system design and implementation.

Specifications describe systems, sub-systems, and components at different levels of
abstraction and for different domains. A system's requirements are usually described
functionally. As the system design is refined, sub-system and component functions are described
in terms of interfaces and services. As the system is further refined, detail is added, possibly of
different types. Notations specialized for domains facilitate the communication of essential
concepts (e.g., design rules, models, and theorems) of the domain among system designers and
engineers. Tools that perform checks on these notations verify that specified requirements are
satisfied by the implementation.

 Status

Specification has been most successful for functional properties. For software specification, a
few areas of industry are now open to trying out generalized formal notations to document a
system's properties more rigorously.1 One current trend is to integrate different specification
languages, each able to handle a different aspect of a system. Another is to express non-
functional aspects of a system such as its performance, real-time constraints, security policies,
and architectural design. These notations, while useful, are not widely applied in industrial
settings primarily because they are not easy to use, not scalable, and do not address the domain-
oriented specification problems of those industries.

Needed Research

Specifications must convey necessary information to the system builder in a useful and
unambiguous manner. Research is needed to investigate how to define, represent, and use logical
and verifiable specifications for individual components and their interfaces used to construct

                                                  
1 Some formal methods focus on specifying the behavior of sequential systems. States are described in terms of rich mathematical structures

like sets, relations, and functions; state transitions are given in terms of pre- and post-conditions. Other methods focus on specifying the
behavior of concurrent systems. States typically range over simple domains like integers or are left uninterpreted, and behavior is defined in
terms of sequences, trees, or partial orders of events. Still other formalisms wed two different methods, one for handling rich state spaces
and another one for behavior, interaction and concurrency. Common to all these methods is the use of mathematical abstraction and
composition.



HCSS Research Needs 7 1/10/01

high confidence systems. More needs to be understood about how to modularize and compose
component specifications. Efficient and effective methods need to be developed for decomposing
a computationally demanding global property into local properties whose verification is
computationally simple.

 Specification methods and supporting languages and tools should facilitate modeling and
abstraction and they should provide means to automate the correlation of the different levels of
abstraction within and among systems, sub-systems, and components. Foundations are needed
for specification technology that supports reasoning at multiple levels of abstraction and across
component boundaries. Means to support analysis of legacy systems are also needed. In limited
circumstances, it should be possible to develop abstraction techniques that can construct various
types of abstract specifications from existing systems code.

Specification languages that are executable are needed to support tools for system
visualization, design, analysis, implementation, and validation. A greater range of domain-
specific specification languages is needed to accommodate hardware and software design. Sound
abstractions, tailored for various system or problem domains, need to be developed and formally
justified. Tailorable specification approaches need to be developed to guide the construction of
tools that provide expressive power, problem-based reasoning support, efficiency, and ease of
use.

Benefits

This research will result in new approaches to specification. The main benefit of specification
is gaining a deeper understanding of the system being specified. It is through this specification
process that developers uncover design flaws, inconsistency, ambiguity, and incompleteness. The
specification is a useful communication device between customer and designer, between
designer and implementor, and between implementor and tester. It serves as a companion
document to the system’s source code but at a higher level of description.

Formal specifications help to ensure with a high level of confidence that a system behaves as
required without unintended or unexpected side effects. Moreover, the tangible product of formal
specification is an artifact that can be formally analyzed (e.g., checked to be internally consistent
or used to derive other properties of the specified system) and can be used in automated system
construction. Systems derived from formal specifications are self-documenting and generate
their own validation and verification criteria. When it is necessary to execute mobile or foreign
code in networked environments, specification can play a vital role in providing contracts for
safe execution.

1.3  INTEROPERABILITY

Different methods are suited for modeling and reasoning about different system properties.
For example, a state machine may be best for specifying certain kinds of behavior, while a
dependence graph may be best for modeling information flow. Given that no one formal method
is likely to be suitable for describing and analyzing every aspect of a complex system, a practical
approach is to use different methods in combination. A future issue is that a problem may be too
hard to represent in full detail. In this case, a related but more abstract approach is required.



HCSS Research Needs 8 1/10/01

Many difficulties originate in the competing requirements of different properties. For example,
the resource requirements of methods for fault tolerance may negatively affect performance. This
demands more than a simple combination of different methods; an interacting interpretation of
their meanings must be provided. To address competing requirements, various views of the
system must be considered where a single change can potentially affect all.

Status

Interoperable approaches for reasoning are needed in order to consider multiple properties
and the interaction of these properties and to provide an explanation that spans different methods
and supports multiple properties. Some progress has been made on mixing deductive and
analytic techniques, and in establishing relationships between logical methods. However, many
barriers exist to interoperability. Methods that translate models represented in one logical system
to another are not mature. The dependence of a proof on a given logical theory is often deeply
embedded. To explain the proof in another theory entails making the rules of inference of the
first theory explicit in the second theory.

Needed Research

Research is needed to enable combination of assurance methods that analyze and establish
system properties. Interoperability research must provide a key part of the theoretical basis for
the tools research described in further detail in Languages, Tools, and Environments (Part 2,
Section 1) and in Modeling and Simulation (Part 2, Section 2). Managing human effort in these
tools is a key issue. This research should enable clear tradeoffs to be made between the
capability of methods used and the effort required to apply them. It can also enable the
integration of reasoning into languages and tools that provide information and a usage context.
For scalability, this research must develop useful and efficient ways to apply mixed techniques.
For example, by first applying analytic (e.g., model checking, decision procedures, simulation)
methods one can limit the number of cases that require full search for a proof using deductive
methods.

Research is needed into the combination of reasoning methods and of different models to
address mutually dependent properties. Dependency analysis that can span different models for
different, and sometimes competing, properties is necessary to reveal the pattern and extent of
interference. Means must be developed to reason about and explain the consequences of
interfering properties and to resolve or mitigate the interference.

Research is needed in open frameworks to organize composite reasoning problems, apply
appropriate tools, and present composite results. Research is needed in exploiting failed proofs,
which can produce counterexamples to find and explain cases in which a system would fail to
perform according to its requirements. In a composite reasoning problem, the explanation must
span methods.

Foundations are needed for strategies that combine both approximate and detailed methods
and that provide a range of automatic and interactive operation. This research should inform the
development of useful tools rather than providing a purely theoretical perspective.



HCSS Research Needs 9 1/10/01

Benefits

By providing a composite analysis framework, this research will enable the use of description
and reasoning techniques that are most natural for particular problems. It will simplify and
provide general approaches for combining results and for simultaneously achieving desired but
competing requirements. This research will enable reasoning and explanation that spans different
models and supports multiple properties. An important benefit would be the early production of
counter-examples that explain design flaws, bridging different methods to provide combined
explanations of complex interactions that could lead to failure.

1.4  COMPOSITION AND DECOMPOSITION

Better scientific understanding is needed on the effects of integrating components and
systems, and how to go about this in order to achieve requisite system properties with high
confidence. Systems of the future often will be distributed, may have many components, and will
be highly dependent on networking and information infrastructure. Components executing in the
context of other components may produce unexpected, possibly undocumented, behavior. The
computational environments in which they must execute cannot be predicted exactly, and diverse
failures must be tolerated. Many systems requiring high confidence involve control of physical
systems and require simultaneous control of subsystems through coordinated actions. One
component in the computational or physical environment may interact or interfere with another
component’s operation through (1) physical effects, (2) shared computational resources, or (3)
algorithmic or heuristic logic. Such interaction or interference may be through explicit
interactions components take (or fail to take), thereby modifying the behavior of other
components. Dynamically occurring interference effectively widens “the interface” through
which components interact. It can be sources of unexpected failure and failure propagation. So-
called “emergent behavior” can also result in systems that are integrated from components. This
was dramatically illustrated in the replicated and interacting behavior of recovery software that
led to the cascading AT&T long-distance failure in 19902.

Status

Progress has been gained in reasoning about logical isolation and encapsulation to prevent
interference of operations in computer hardware. However, concurrent operation, dynamic
adaptation for logical mismatch, and various types of interference are difficult areas for
reasoning about systems and they are key challenges for understanding increasingly software-
centered systems.

Modern software and programming language designs have improved modularity and
information hiding mechanisms, which limit their potential to interfere with each other in the
storage and retrieval of data values. However, this has led to design practices that assume
components are “compositional” in all other behaviors: specifically, that they can be integrated
and still operate the same way in any environment. For many environments, this assumption does

                                                  
2 Philip Elmer-Dewitt, “Ghost in the Machine,” Time, January 29, 1990, pp. 58-59; (see also “Phone Outages Blamed on Switching Software,”

IEEE Software, p. 100, September 1991).



HCSS Research Needs 10 1/10/01

not hold. In the component marketplace, components are currently provided without explicit
descriptions of their behavior. Furthermore, implementation mechanisms intended to achieve
specific requirements (e.g., fault tolerance through reconfiguration) are currently designed
separately and can inadvertently defeat another property (e.g., security). Techniques are lacking
for examining global system behavior that results from composing local, often replicated,
behavior.

Needed Research

Research needed to remedy this gap includes theoretical frameworks, engineering methods,
and supporting tools that directly enable composition and decomposition (both integration and
top-down design methods) with reasoning about consequences for crucial system properties.
Sound composition and decomposition methods and sound engineering principles must be
developed as a foundation for languages and tools that can be used to engineer robust systems.
Balance and synergy must be achieved between the engineering support needed for constructing
complex systems and the logical and mathematical support required to extract and combine
properties across systems. A scientific basis is needed for detecting and managing interference
and interaction in systems. For example, it might be useful to determine which parts of a
computation or system are sensitive to context and which are not. Other issues include
accommodation of unknown behaviors and environments. Techniques are needed for
constructing composite views, for analyzing interaction, and for fast automatic checking of
system-level properties.

Foundations are needed in such areas as analyzing software-based concurrency to check
isolation and enable partitioning and encapsulation of effects. This can provide a basis to be
exploited in languages and engineering tools for building systems that robustly manage
interference and limit the propagation of failures. Challenges include the following:

•  New approaches to component technology and sound composition of  “peer”
components coupled with design methods that weigh multiple aspects of a system and
compose property-based measures to achieve overall system assurance.

•  Support for managing hierarchically designed or layered systems. This includes
reasoning and transformation that crosses layer boundaries: hardware, networks,
operating systems, and applications. It also includes management across the
boundaries of interacting, hierarchically structured subsystems.

•  Support for explicit description and analysis of interactions between the system and
its operational context. This would further enable reasoning about, and controlling,
the interactions of software and systems with the environment or with human
operators.

•  Representation and management of “meta-descriptions” for recording and managing
composite system structure.



HCSS Research Needs 11 1/10/01

Benefit

This research will enable the systematic construction of software-centered systems from
components. It will lead to designs that can provide more robust, reliable operation in
unpredictable environments. It will provide a new technological basis for adapting components
and systems to different contexts. It will improve the predictability of composite system
operation and will provide a sound scientific and technological basis for engineering design and
construction tools.



HCSS Research Needs 12 1/10/01

PART 2:  HCSS TOOLS AND TECHNIQUES

2.1 PROGRAMMING LANGUAGES, TOOLS, AND ENVIRONMENTS

The kinds of systems we want to build are beyond the complexity manageable by sheer
human effort. As in other scientific and engineering disciplines, computer aided design and
analysis tools serve as enablers and multipliers of human capabilities to design, analyze, and
reason about complex systems. Tools can encapsulate sophisticated theory and methods, reduce
skill and training requirements, and amplify theoretical and domain-based engineering skills.
Tools that assist and enhance the design and analytic capabilities of people and support their
reasoning about the properties of complex systems will enhance productivity, enhance the
quality and reliability of software-based systems, and reduce costs of production and
maintenance of products.

Technology support is needed to embed assurance into the software and system construction
process. Languages, tools, and environments must be developed that include support for
reasoning about concepts relevant to the domain of application and reasoning about properties
demanded of the software. The spectrum of such support includes design tools, programming
languages and user support for their correct and efficient use, code generators, and technology to
promote verification and testing. These, in turn, involve notations, graphical interfaces, shared
databases, theorem provers, modeling methods and model checkers, test-case generators,
documentation management, and other logical and developer-oriented mechanisms. All
development support software should increasingly foster the production of “correct-by-
construction” code and provide analysis capabilities for all stages of development and
maintenance.

Status

The software in an application system is inextricably interrelated with the physical or
information environment of the domain in which the software is deployed; however, general-
purpose programming languages and verification systems do not naturally incorporate the
concepts of the application domains (operational or structural). Constraints and relationships that
are natural to the application domain must be tediously and repeatedly built into the system,
slowing and complicating development as well as breeding possibilities for error. Similarly,
general-purpose languages and verification systems are not expressive enough to enable or
enforce system properties such as fault tolerance. The same weakness is found in design tools.
As a consequence, the software development process and the software assurance process are
often conducted as separate activities, with the result that properties such as performance and
fault tolerance may be ignored at the outset and then patched in (often unsuccessfully) once the
development is well along.

Programming languages hold a unique position in the software development process, being
the facilitator and gatekeeper between concept and implementation. The source code produced is



HCSS Research Needs 13 1/10/01

the basis of both the product implementation and the ongoing maintenance activity thereafter.
Source code also bears the human-accessible semantic content of the system: Faults as well as
upgrades are, with current technology, understood and dealt with in terms of the programming
language. In addition, compiler technology is often cited as one of the great success of computer
science. The field has advanced tremendously in both theory and technology, with a current
ability to routinely produce optimizing compilers for a bewildering array of source and target
languages and computer architectures. In contrast to the more traditional development methods,
the newer intentional and aspect-based programming approaches promise implementation
support that avoids explicitly programmed imperative actions that allow the implementation to
be optimized with respect to performance and other non-functional properties such as fault
tolerance. Although this would appear to overcome many of the problems mentioned earlier
(separate development of functional and non-functional aspects), the research is very recent and
results are immature.

Another promising direction is that of design patterns where recent work has shown how
such patterns can be established, tested, and reused with a concomitant increase in assurance for
the systems constructed. Such high-level reuse holds potential for more widespread adoption and
greater effect than reuse of code, but much more remains to be studied. Little work has been
done in pattern verification methods or in ways to provide specialization or modification of
patterns for use in circumstances that demand high confidence. Tools for verification would
appear to hold the greatest promise for providing high confidence because of the unequivocal,
logical guarantees they can offer. Verification methods, and model checking in particular, have
enjoyed a sudden and dramatic increase in acceptance and use for computer hardware
verification. Widely publicized failures of commodity processors and the subsequent detection
via model checking of the source of the failures have increased industry awareness of the risks of
unverified hardware designs. Similar progress has not been achieved for software systems, which
have far less regularity and much greater complexity than hardware systems. Of the various
directions being explored to increase the use of verification techniques, two appear to hold the
greatest promise: "lightweight" verification methods and extended type systems.

Lightweight methods are those that sacrifice some aspect of completeness of verification in
order to provide more "effortless" application of the tools. While complete verification of a
system is the ideal, it is seldom practical for two reasons: The computation time required is
exorbitant and the sophistication required of the developer is too high. In these cases, some
combination of incomplete and even informal methods may be useful to automatically eliminate
some classes of errors. Where full verification is seldom modular or compositional, techniques
based on abstraction and partial correctness often can be so. A number of recent techniques such
as proof-carrying code (PCC) and code certification depend on lightweight proof checkers rather
than heavy-duty theorem provers. Of course, proofs must still be generated, but this more
difficult activity is done at the time of code generation while the checking is done at run time.
Good engineering approaches are lacking for the management of effort in a coordinated
verification and development activity. Proof-carrying code illustrates the strategic combination
of two tools: one a theorem prover (heavyweight) that exploits the information-rich, compile-
time environment, the other a proof checker (lightweight) for runtime checking.

Finally, the techniques used by compilers and those of verifiers have not yet come together in
extended type checking. Traditional compilers provide type checking, which is a limited form of



HCSS Research Needs 14 1/10/01

verification, assuring that programs make consistent use of data and functions. Checking of
extended types can be done by model checkers, verified decision procedures, or theorem provers.
While there are a number of encouraging theoretical results, this line of research is in its infancy.

Needed Research

The overall HCSS languages, tools, and environments strategy is to eliminate error sources
through a combination of logically precise automated mechanisms and automation-supported
human activity. Domain-specific models and languages are needed that are readable and
reviewable by application and systems engineers, and are formal and rigorous enough to be
interpreted and analyzed for specific properties, for example system safety properties. The
environment in which the development takes place should assist the developer to detect and
correct mistakes as early as possible. With automated assistance, the code that is eventually
generated should be guaranteed to be free of as many types of errors as possible. Research is
needed in analysis that can be made on the code incrementally as it is developed. Ideally the
developer will not have to learn an entire new method, but will view the assurance step as an
enhancement of his/her current method. Consequently, the methods can be made not only
lightweight, but relatively invisible and nonintrusive or helpful, with simple, small extensions to
what developers already do and to the tools and languages they find useful for development. This
goal is far easier to achieve in domain-specific contexts than at the most general level, since the
semantics of the domain can be incorporated to guide, restrict, and reason about the development
process. New technologies are needed to integrate domain-specific reasoning capability into
languages and design tools. Such technologies would include domain-specific and application-
specific extended type systems as well as techniques for specializing more general languages and
tools with domain theories and inference mechanisms. Domain-specific techniques need to be
incorporated in languages and tools, for example hazard analysis in the safety domain and
vulnerability analysis in the security domain.

Advances are needed to make model checking fast enough to be practical for irregular
computational structure, such as is exhibited by software. Promising directions for expanded
applicability are abstraction and hierarchy, set- and graph-theoretic methods, and modular model
checking. Research is needed in combining approaches, including: program slicers, model
checking, theorem proving, semantic analyses, relational analysis over finite domains, type
inference and analysis, and testing. In this area, approaches should be explored to support risk-
and effort-based use of these methods. Research is needed in good engineering approaches for
managing verification effort. This includes both new technologies that can reduce or allocate
effort and approaches for making tradeoffs of verification effort and risk. Furthermore increasing
use of graphics, non-standard input modes, and voice entail careful application of these media in
language definition and for increased productivity and program quality. Formal methods and
language research can take advantage of these new technologies.

Other important research should address expression of and reasoning about additional
attributes such as real-time constraints, performance requirements, fault-tolerance, reliability,
security demands, and failure detection and recovery. Lightweight methods and tools should be
extended to help establish these properties as well. Intentional and aspect-based programming
needs to be developed further in this same regard.



HCSS Research Needs 15 1/10/01

Benefit

Tools that assist and enhance human design and analytic capabilities, and support human
reasoning about the properties of complex systems will enhance productivity, “raise the bar” for
quality and reliability of software-based systems, and reduce costs of production and
maintenance of products. Programming language research can support the creation of high
confidence systems by providing expressive, semantically sound methods for implementing
problem solutions. Compilers can provide stringent tests and useful feedback, filtering out a
variety of errors and supporting the validation process. Good language design can significantly
improve the maintainability and evolvability of a system. The use of domain-specific languages
and tools provides even tighter assurance that the semantics of the application are respected.

Assurance technologies that can be embedded in languages and design and analysis tools will
simplify the construction of systems with requirements for highly assured non-functional
properties such as real-time response. For such systems, the traditional approach has called for
separate measures to achieve the assurance with a resultant much higher cost or the abandonment
of the high assurance goals. The new assurance technology would reduce the tendency to defer
or omit assurance measures due to time and cost pressures. Safety, security, and fault-tolerance
would be considered in design from the outset rather than being patched onto existing designs.
With combined assurance and tool strategies, the bar can be raised for the lowest level of
assurance that can be widely demanded. The mechanisms to assure desired properties would be
simplified for many cases, and additional verification effort could be selectively applied
according to risk.

2.2  MODELING AND SIMULATION

The importance of models is well understood in the design of complex mechanical systems
where modeling and simulation are used to explore possible behaviors of the modeled system,
narrow the design space, and reduce expensive construction and physical testing steps through
early illustration of design hazards. Similar approaches are needed to enable development of high
confidence, software-centric systems and to reduce test and certification costs. However, as
useful as simulation can be, it is often incomplete, missing important inherent behavior. Formal
model checking and verification may be needed to provide more rigorous and comprehensive
evaluation.

Model construction is prerequisite to both formal and informal reasoning about systems.
Even though techniques such as model checking are automated, they may depend upon manual
construction of appropriate models of software and systems. It is difficult to develop models, and
most currently are “crafted by hand” by a team of simulation experts or logicians separate from
the engineers who design and build the system. This doubles the effort by requiring separate
development activity and assurance activity. It also de-couples development from assurance,
with the result that assurance plays a lesser, or often even neglected, role, or that the system and
the model (which is the basis for reasoning about the system’s properties) diverge.

Models may contain information about the domain, the application, and the implementation.
Domain analysis can provide an explicit description of the principles of an application domain
such as aerodynamics, kinematics, or economics. Ideally, descriptions would be constructed that



HCSS Research Needs 16 1/10/01

allow rigorous reasoning from these principles. These descriptions would apply to various kinds
of software and system applications in the corresponding domains. Furthermore, where software
controls a mechanical or information system, the software (as well as the controlled system) is an
active system element and its behavior may need to be described in the model.

In some cases, software and engineering models might be used directly for reasoning about
systems. Often, however, a fully detailed description may not be needed or may be too large for
feasible analysis. The needed reasoning may concern only specific aspects of the system. In this
case, simplified or partial models are needed to manage the complexity of analysis. For tractable
simulation reduced models that preserve essential properties of interest are often required.
Consequently, methods and tools are needed to obtain models at different levels of fidelity or
abstraction. Methods are also needed for understanding and managing the relationships between
models at different levels.

Status

It is difficult to develop models. Most are developed by hand. This doubles the effort by
requiring separate development activity and assurance activity. It also can de-couple
development from assurance activities, with the result that assurance plays a lesser, often
neglected, role. In general, commercial components are not accompanied by either behavioral
descriptions or other models.

Some analytic techniques now exist for deriving models of software behavior, but these are
limited. Software models often have large state spaces and can lead to infeasible formal analyses.

Domain engineering is a largely informal, often ad hoc, process. Furthermore, little direct use
or reuse is made of domain information in downstream tools. Potentially useful engineering
models are often put on the shelf after design and are not employed during software and
systems engineering. Models that could support both informative simulation and proof are
inadequately explored. Because of these difficulties, modeling and formal analysis of domains,
software, and system implementations are currently in limited use. As a result, designers and
operators of complex systems often do not have accurate abstract views of system and software
behavior.

Needed Research

Research is needed to develop rigorous descriptions of application domains and to use such
descriptions in languages and tools. Domain models, captured as formal theories, should provide
a basis for rigorous reasoning about software and systems. In combination with descriptions of
specific application requirements, domain theories and their associated reasoning tools might be
used to specialize tool and language technology into design environments that provide the
support necessary for building high-confidence applications in the domain. Such tools would
provide greater assurance about domain-specific aspects of system behavior.

Research in tools for describing and analyzing system and software behavior is needed. One
issue is how to automate the creation of models from software, including software model



HCSS Research Needs 17 1/10/01

derivation from widely used software distribution formats such as Java byte code. Automated
abstraction is needed to generate models having feasible analyses while preserving validity and
correspondence to the real system. Another research issue is how methods currently used for
verification and analysis (e.g., theorem proving, model checking) may supplement informal
simulation techniques, and how common models may be generated that could be used for both
verification and simulation.

Benefit

The benefit of this research is that the behavior and other properties of systems will become
explicit and more available for analysis and prediction. Simplifying the task of modeling would
make assurance technology more accessible and usable for developing high-quality software and
systems. Automation will reduce human errors and improve the accuracy of models. Successful
abstraction and other scaling techniques will enable sound and automated analysis of large
systems and will improve human understanding of system design and operation.

This research can also enable the generation (“autocoding”) of correct software from system
specifications and domain-specific models for certain classes of applications. Furthermore, it can
enable semantic visualization that exploits model information to improve designer, evaluator,
and operator understanding of systems and software.

2.3  HCSS BUILDING BLOCKS

Rapid engineering of high confidence systems requires a technology base of components
with understood high confidence properties and a methodology for assembling those components
in such a way that the properties of the resulting system can be understood, reasoned about, and
validated. Such components, or building blocks, include hardware, operating systems,
middleware, communications, and other run-time services.

Status

Current high confidence systems are largely constructed from scratch, treating each new
system as a bottom-up design effort. While off-the-shelf processors may be used, they typically
come from product lines targeting niche markets. These products lack significant software,
programming, and system development support. They are often programmed by hand in
assembly language, making analysis of the correctness and properties of the resulting functional
unit and system difficult. Operating systems for high confidence systems are similarly
characterized as targeting niche markets, causing them to lag broad-based commercial offerings
in functionality and performance. The last decade, for example, has seen the emergence of a
robust market for real-time operating systems targeting embedded systems, but these products
lack the critical networking support essential to emerging system architectures. Middleware
technologies, such as CORBA and Java Virtual Machine, that raise the level of abstraction
presented to the programmer, are attracting increasing attention from the HCSS community, but
these technologies currently fall short of the mark in performance, overhead, and support for
high confidence properties. Where extensions to these technologies for high confidence are being



HCSS Research Needs 18 1/10/01

developed, the existing development processes emphasize stove-piped methods for each property
rather than integrated solutions.

Needed Research

A two-pronged approach is needed to make COTS technologies viable in the construction of
affordable high confidence systems.

First, reference implementations demonstrating the incorporation of HCSS properties into a
new generation of commercially viable components, such as processors, operating systems,
schedulers, error handlers, protocols, probes, monitoring modules, policy modules for various
security policies, scheduling policies, concurrency policies, and supporting middleware
environments must be developed. Successful transitioning of these reference implementations to
mainstream product lines will require that such extensions impose minimal interference with
existing functionality and performance, and minimally impact cost and time-to-market. Second,
middleware technologies that permit the construction of high confidence systems out of
components that are not necessarily themselves high confidence must be developed. In spite of
our best efforts at improving the viability of COTS components in HCSS, transition, deployment,
and adoption is likely to be slow. Even as such products become available, system developers
will need to rely on a heterogeneous technology base of robust and untrusted components.
Furthermore, as "embedded" systems become networked, developers will find themselves
increasingly relying on major systems or subsystems over which they have no control or
information. Middleware technologies that can rely on the HCSS properties of lower system
layers (where those properties are known and validated) and detect and compensate for the
absence of such properties where necessary are central to the construction of next-generation
high confidence systems.

Benefits

These technologies will provide the capability of rapidly assembling high confidence systems
from commodity components while concurrently demonstrating reference implementations of
commercially viable next generation components with inherently stronger high confidence
properties. The availability of such a technology base will allow the rapid, affordable
construction of high confidence systems.

2.4  ROBUST SYSTEM DESIGN

System design often focuses primarily on the required behavior of the system under nominal
(normal) operating conditions. High confidence systems, however, must continue to operate
correctly and safely under a variety of adverse operating conditions that can interfere with or
compromise functional integrity. Sources of adversity include the physical environment,
unanticipated use of the system, and anomalies. Examples of physical phenomena that affect
system operation include vibration, temperature, humidity, lightning, electromagnetic
disturbances, and (for air vehicles) atmospheric disturbances such as wake vortices, and weather



HCSS Research Needs 19 1/10/01

related adversities such as wind shear, turbulence, and icing. Examples of unanticipated use
include human operator error, unexpected inputs, and use of a system or component outside its
design envelope. Increasing emphasis on reusable components and interconnectivity can also
lead to a system or component being used for a purpose other than that for which it was designed
or being required to interact with other systems or components not envisioned at design time.
Anomalous conditions range from failure modes such as component, data and timing faults to
unusual workload demand, to malicious activity. High confidence systems must often exhibit
robustness against a large subset of this broad range of adverse conditions.

As an example, consider a surgeon at an urban medical center remotely guiding a telesurgical
procedure at a rural or combat field hospital. In such a case, a high-confidence system is needed
to help ensure the functional integrity of the system operations even if a storm causes the hospital
to suddenly switch to auxiliary power, or if the network is attacked by a malicious intruder.
Similarly, advanced commercial or military aircraft that depend on high-confidence systems
must not lose control if a wind shear is encountered or if components such as sensors, actuators,
or processors are impaired or damaged.

Status

New performance and survivability demands are arising for many systems. For example, for
future airspace systems there is a need to increase airspace capacity, or to increase the number of
passengers carried by a single vehicle. Within today’s systems and controls discipline, general
methods and techniques exist for modeling and analyzing function, performance, and robustness
of most dynamical processes. However, current design methods for assuring integrity and
performance will not be sufficient to assure future high confidence systems that demand
improved performance and survivability under a broad range of operating conditions.

Needed Research

The design fidelity of systems, as well as functional integrity and performance in the specific
application, must be guaranteed for both nominal and adverse environments and conditions.
Designs should facilitate inclusion of new requirements that impact robustness. In addition to
showing that the high confidence system has no design errors and is fault tolerant to specific
classes of faults and component failures, it must be shown that these systems perform the
intended function and will not malfunction under a variety of conditions. New system
mechanisms and abstractions to simplify the designer’s task in constructing robust systems are
needed. Architectures for these systems must be developed and demonstrated that can reduce
vulnerability to adverse environments and conditions. Analysis and validation methods must be
developed that enable a system to be assessed in the context of the function it is to perform.
Research into a variety of related tools and technologies is needed to address this topic.

System-Level Modeling and Analysis. Currently, practitioners with different specialties
separately, and independently, address different types of design issues. Development of the
needed modeling methods will require a multidisciplinary approach that includes the merging or
correlation of models and techniques for problems such as system identification, state estimation
and prediction, uncertainty modeling, parameter dependence, and discrete event transitions.



HCSS Research Needs 20 1/10/01

Software tools are needed that will facilitate the development of these models, which can then
form the foundation for design, simulation, analysis, and validation processes. Modeling and
analysis techniques and tools developed under other components of this research must be scaled
up to capture system level behavior and expanded in scope to accurately capture the operational
environment, including failure modes, operational uncertainties, and unanticipated inputs.
Techniques are also needed to analyze fault propagation between interconnected systems.

Abstractions and Mechanisms. New abstractions are needed to simplify the incorporation of
robustness into high confidence systems. New mechanisms that allow systems to tolerate various
types of faults and anomalies while continuing to satisfy other high confidence properties are
needed. Existing fault tolerance methods need to be rethought to accommodate operation under
real-time and security constraints and encapsulated as reusable (but customizable) services and
middleware. Innovative new methods of robustly interfacing software components are also
needed to automatically “impedance match” components by ascribing explicit semantics and
constraint to interface definitions. Active interfaces, for example, could not only handle
mismatches in data types and formats, but could further include mechanisms to address timing
and synchronization issues, incomplete data, and propagation of information on the uncertainty
or “quality” of the data.

Architecture. Techniques are needed to enable the systematic design of failure or degraded
modes of operation that can limit some aspects of function or performance in order to assure
system survival. Architectural constructs that allow isolation of faults or malicious behavior and
limit propagation of errors or uncertainties are needed.

Human System Interaction. High confidence systems must be developed at every stage with
consideration of human-machine interface issues, because the human operator eventually
becomes a critical part of the operational system. Methods must also be developed for designing
tolerance to human errors or malicious actions into the system. Formal methods could be
explored for precisely representing to operators the behavior of systems with complex functions
and modes and in supporting automated processes that assist in their training.

Benefit

The main benefit of this research will be reusable design knowledge encapsulated in the form
of reusable abstractions and enforcement mechanisms. This HCSS research will lead to robustly
designed systems that achieve greater resilience under adverse or hostile operating conditions
and will provide improved performance and function for normal operations.

2.5  MONITORING, DETECTION, AND ADAPTIVE RESPONSE

Once a system has been designed, built, tested, and deployed, there is a need to ensure that it
continues to operate as a high-confidence system. Employing the technologies and practices
developed under the Robust System Design topic will provide a crucial enabling foundation for
this, but will be insufficient in ensuring that the global system behavior is maintained. For real-
time safety-critical systems, secure systems, and other critical systems, one way to provide this
additional level of confidence is to identify measurable system parameters and then develop
methods of sensing these parameters to monitor the status of the system. When these parameters



HCSS Research Needs 21 1/10/01

fall outside established bounds, due to inadvertent or deliberate actions, it may be an indication
that the system has reached the point where high confidence can no longer be guaranteed. Then,
a response may be needed to restore the system to a high confidence state, gracefully degrade it,
or halt it.

Real-time monitoring methods must therefore be developed for detection, diagnosis, and
prognosis of malfunctions and failures in adverse environments and operating conditions.
Monitoring must account for unanticipated events as well as those that can be predicted. Real-
time accommodation includes the capability for system reconfiguration to recover from system
failures and errors, the capability to adapt to and mitigate adverse environmental conditions, and
the ability to provide operator warnings and cues.

Status

Most research in fault tolerance for safety-critical systems has focused on conditions such as
failure of a processor or sensor. It also has focused on the assurance provided by fixed levels of
component redundancy. For example, identical computations might be carried out on three
processors, and the results compared. Often, the comparison is carried out by a voter that
determines, for example, that the same result is given by only two of the three processors and
that result is used. This entails dedicated processors, which require additional space, power, and
weight. Furthermore, if the voter is not also redundant, it becomes the single point of failure.
Lacking are fault tolerance methods that can dynamically assess the location of vulnerabilities,
and invoke reconfiguration and adaptation to prevent or accommodate faults.3  A system may not
only need to detect and react to each parameter. It may need to monitor a collection of
parameters, as well. Consider, for example, the problem of intrusion detection in a secure
system.

A great deal of investment in secure systems research has focused on traditional information
security mechanisms for confidentiality, integrity, and availability. Simple sets of parameters for
security do not adequately describe a highly secure, highly available, and high-integrity system.
Security sensors and probes generally work independently of each other, with no communication
from one sensor to another. Most sensors and probes are designed to watch for patterns
(signatures) in the network, and produce a warning when they are detected. Others utilize
statistical analysis or a combination of the two methods. Still others use new, experimental
methods. Since there is little or no communication among the sensors and probes, an event
detected by one device cannot necessarily be correlated with a related detection by another
device. Consequently, while none of a system’s parameters individually may exceed threshold,
considered collectively they may indicate an out-of-bounds condition. It is also necessary to
ensure the integrity of the information reported by a sensor or probe.

                                                  
3 National Research Council, Trust in Cyberspace, Fred B. Schneider, Editor, National Academy Press, 1999. The full text of the book is

available on-line at http://www.nap.edu/readingroom/ records/0309065585.html



HCSS Research Needs 22 1/10/01

Needed Research

Research is needed in the correlation of sensor data for detection and analysis of non-local
failures or attacks. For safe control of physical systems, sensor and actuator calibration against
predictive models may be needed to detect variations that could arise from physical obstruction
or interference in the operating environment. Fusion with other data sets (e.g., patterns of attack)
may be required, as well. Visualization techniques are needed to aid in the analysis of data.

Approaches are needed for ongoing evaluation of sensor and actuator effectiveness during
system operation. Filtering of data is necessary to limit what and how much data should be
collected to maximize the possibility of detecting anomalies. Probes will need to be provided
with some degree of real-time data analysis capability.

One profitable area of research might be in how sensors and probes collaborate and share
information with each other. This would allow for specialized sensors or probes that would not
have to look for all events. Each could have a specific tailored focus. For example, for detecting
intruders in a secure system, static sensing may not detect distributed attack strategies that take
advantage of the limitations of static sensors. By allowing specialized probes to move freely
through the network, the part of a distributed attack that one sensor cannot detect may be
detected by another.

Issues include the performance impact of augmenting (e.g., “global”) sensors, which should
be minimal so they do not significantly degrade performance for legitimate users of the system,
and they should be designed to be unobtrusive. These sensors should be easily adaptable to
support the level of confidence needed in the system. Techniques are needed that will allow them
to protect their own integrity and the integrity of their data.

After data has been collected, processed and analyzed, appropriate response techniques must
be employed. Research is needed in toleration and adaptation strategies and techniques. For
example, new fault tolerance techniques for high confidence systems might be developed and
demonstrated that can evaluate failures or vulnerabilities and provide adaptation, reconfiguration,
restructuring, and function migration. Analytical methods for determining and quantifying fault
coverage and the resulting performance of such techniques are also needed.

Benefits

The availability of this technology would provide a capability that is lacking in current
systems built without monitoring, detection, and accommodation capability. It will enable us to
shift our focus away from total reliance on a priori, “bullet-proof,” system security or safety,
which is often unsuccessful. Understanding how to monitor, detect, and respond dynamically to
inadvertent or deliberate actions will allow systems to deal with disruptions and intruders while
still meeting mission requirements.



HCSS Research Needs 23 1/10/01

2.6  VALIDATION

The term validation, as used here, incorporates the traditional definitions of both “validation
and verification” (“V&V”). It encompasses all activities contributing to an assessment of the
confidence one can have in a system.

Software and system validation activities may occur sporadically throughout the
development process, using methods that vary in completeness. For example, consider an aircraft
flight control system (FCS). Once a system design is verified mathematically, a prototype FCS
can be built. This prototype must be analyzed and evaluated for correct function in its specific
application and for functional integrity under nominal and adverse environments and conditions.
To evaluate the FCS at this stage, it might be interconnected to a simulation of the aircraft,
engines, sensors, actuators, and atmosphere, as if it were in actual operation. In this case, the
FCS issues commands to the simulated control surfaces. The simulation determines the impact
on the simulated aircraft and feeds back to the FCS computed input values that would have been
provided by actual sensors on the aircraft.

It may be possible to validate some attributes during the early phases of design if appropriate
specification methods and tools are used (e.g., live-lock, deadlock, error recovery). Others may
not be assessed until a complete implementation is created.

Status

Validating properties of software currently is done by hand, and typically entails developing
a test suite that exercises certain properties of the software. Exhaustive testing of all cases is
impossible for non-trivial software; hence testing cannot prove the absence of design flaws or
execution time faults and failures. Similarly, simulation of system operations under nominal and
adverse environments and conditions may encounter an infinite number of conditions that can
occur. Simulation and testing may be useful design tools, but exhaustive testing and simulation
alone are impractical validation methods for complex high-confidence systems.

The dominant software testing theories and methods are based upon “white box” testing that
assumes the program code or other detailed representation of the software module to be
available. (This is generally untrue of commercial, off-the-shelf (COTS) software and much
legacy software.) White box testing tools typically analyze the control and data flows in the
program code to craft a test suite that covers certain paths. Paths are tested by selecting input
data that forces their evaluation and checking for the corresponding expected output data. When
necessary, “black box” testing must be used. It presumes that only the interfaces are available,
and the tests must be conducted by observing input/output exchanges at the interfaces. Systems
and integration testing in industry is based primarily on black box testing. Black box and formal
methods together have been applied (specifically, composing components using process algebra
and state space exploration). Some techniques exist to limit the number of tests to a manageable
set. Initial research in using formal methods to limit testing requirements is promising, but not
mature. Formal descriptions (e.g., using finite state automata or process algebra models) and
verification or model checking are becoming widely-accepted tools for specifying and validating
communications protocols. Model checkers are also increasingly used for hardware verification.



HCSS Research Needs 24 1/10/01

Some tools that, e.g., combine testing, analysis and formal verification have been studied4.
However, most software is validated without the consideration or benefit of formal models and
reasoning techniques. Most of these theories and best practices remain beyond the reach of the
majority of validation practitioners, typically programmers with ordinary training and skills.

Needed Research

New validation methods, employing HCSS technologies are needed to supplement and
reduce the need for costly and time-consuming post hoc testing- and simulation-based processes.
Research is also needed that leads to validation methods that systematically combine formal
methods and language-based assurance, analysis, testing, and simulation. At the system level,
innovative, model-based mathematical methods that evaluate and quantify system properties
such as stability, robustness, and performance over a wide range of uncertainties (including the
most severe and most probable adverse conditions) could provide much needed contributions to
validation.

For example, analysis of extended programming languages (e.g., domain-specific, languages,
extended type systems) might generate specifications that can be analyzed for different
attributes. Theoretical work in Interoperability (Part 1, Section 3) and Composition (Part 1,
Section 4) should lead to research in the exchange, translation, and combination of language and
tool capabilities to validate properties. Research recommended in Programming Languages,
Tools, and Environments (Part 2, Section 1) should lead to a means of generating code that can
be guaranteed to be a correct implementation of algorithms that were designed and analyzed in
mathematical design tools.

In this context, the research and development focus needed is on those attributes that may be
assessed in the development phases and assisted by automation of design and development tools.
For example, automated validation technology is needed that can consider “correct-by-
construction” techniques that may have been used in system development, or mechanisms that
have been included for fault tolerance and recovery. As one example, methods might be explored
that are analogous to proof-carrying code for certifying software that was developed using these
techniques and mechanisms.

Benefits

Substantial improvements in validation can be gained by including a wider range of
validation methods, in particular formal verification and analysis. Integration of HCSS
techniques and tools together with automation over the development cycle will provide a more
comprehensive end-to-end validation process, and can help mitigate the level of training required
of validators. Reduced cost and time of evaluation is a big benefit. Representatives of the
aerospace and aviation industry reported at planning workshops that industry spends 50% to 60%
of its budget on V&V.

                                                  
4  Proceedings of both the Protocol Specification, Testing and Verification (PSTV) (1980, et seq.) and Formal Description Techniques (FDT)

(1987, et seq.) workshop series were published by Elsevier Science, North Holland, Amsterdam and New York.



HCSS Research Needs 25 1/10/01

2.7  EVIDENCE AND METRICS

Decisions about the acceptability of systems and about comparisons of the quality of one
system with another require supporting evidence. For systems with high confidence
requirements, the soundness of the evidence and its evaluation carries critical safety, security,
and economic consequences.

Status

Satisfactory quantitative measures for certifying software and systems reliability remain
elusive. Historically, statistical reasoning provided the underpinnings for estimating reliability of
composite systems.  Reliability requirements are formulated statistically, (e.g. average number of
accidents per flight hour), then formally decomposed and allocated to different components of
the system.  Models of the reliability of physical system components are generally based on
estimates of component wear and breakage after extensive testing. Some reliability metrics also
incorporate statistical properties of replication-based fault tolerance methods. Software reliability
modeling has largely attempted to mimic physical statistical reliability models, but with variants
such as “reliability growth models” that treat trends in the interval of operation without failure as
a measure of software reliability.

Testing typically has been the principal means to establish that software or hardware modules
satisfy their requrements. The “level” of required reliability that is allocated to a component
(e.g., 109 vs. 104 failure-free hours of operation) determines the testing effort that must be put
into gathering evidence. Substantial research investment has been dedicated to finding methods
for generating tests, measuring test coverage, and building test-based evidence for dependability.
Certain properties of a single execution, such as throughput, can indeed be measured by a test
execution and the figure of merit can be used for comparison with respect to a standard set of
benchmarks. However, extrapolating from the set of executions explored by a finite test suite to
properties of all executions is unsound: combinations of execution conditions that may remain
unexplored could cause failure. Although unit and integration testing are essential activities, and
must be performed, certification based primarily on testing is extremely costly. Furthermore,
testing that would be sufficient to actually achieve prescribed levels of reliability is generally
infeasible.5  Complex attributes pose the core problem, since functional correctness and
crosscutting properties such as safety and security defy valid evaluation using only  simple
numeric measures of test outcomes.  Rudimentary reliability-based testing approaches do not
systematically account adequately for coupled failures, where failure of one subsystem may
trigger failure of another.

Evaluating reliability is a fundamentally difficult problem. It is impossible to provide general
automatic methods to guarantee that programs will not exhibit arbitrary undesirable behaviors.
However, some properties can be checked. Correct-by-construction technology is being
developed to refine functional specifications into code in a sequence of provably correct steps.
Methods and tools that support the automated assessment and integration of desired properties

                                                  
5 Ricky W. Butler and George B. Finelli, “The Infeasibilty of Experimental Qualification of Life Critical Software Reliability", ACM

SIGSOFT '91, Conference on Software for Critical Systems, New Orleans, Louisiana, December 4-6, 1991, pp. 66-76. The paper may be
accessed from the Web at http://techreports.larc.nasa.gov/ltrs/PDF/NASA-91-acm-rwb.pdf.



HCSS Research Needs 26 1/10/01

during the development cycle contribute to dependability. However, current measurement
practice that depends entirely on post-development testing does not consider evidence resulting
from  such development activities.

Needed Research

Research is needed to establish foundations for evidence that can yield consistent,
reproducible evaluation.  Tools and technology should better integrate engineering and
certification processes.  Certifiers should exploit evidence produced during system engineering
design and development in order to reduce effort, identify errors and omissions, and increase
confidence added by the certification activity.

New approaches must be developed that provide evidence based on HCSS technologies. In
this context “measurement” does not reduce to a simple metric whose values are expressed in the
numerical units traditional for measurement of physical phenomena. More structured types of
representation are required to capture the evidence from different assurance activities. The means
used to assess a property and establish evidence of its presence within information technologies
should consider results from mathematical analyses, verification, model checking, and type
checking. Research is needed in how different evaluation methods can be combined efficiently to
build support for confidence. For example, verification or model checking can help limit testing
effort. Particularly lacking is research that contributes to reasoning about specific complex
behavioral attributes and about the composition of systems and evidence  for such attributes.

Benefits

This research will yield new methods and technology for validating systems. Integrated
development and certification practice with rigorous evaluation standards will pave the way for
routine, safe exploitation of information technology in future embedded and complex systems.
By using evidence from the full range of HCSS technologies, costly test-based evaluation can be
limited, thereby significantly reducing cost in the development lifecycle. This will spur the
creation of innovative technologies for next-generation software-centered consumer products and
systems.

2.8 PROCESS

Developers, in producing a system, follow either a formal or informal process that dictates
the stages in the development, the methods and tools used within each stage, and the human and
environment management issues. Confidence in the system produced begins with confidence in
the process used to develop it.

Status

At the same time that hardware has gone through constant, rapid change and improvement,
software development process has evolved slowly in keeping with the increasing size and
complexity of the demands. This same rapid hardware change means that both the hardware and



HCSS Research Needs 27 1/10/01

software components of the system being built are changing independently over the course of
system development.

There is today little agreement about process issues because of this rapid change, the wide
variety of demands, and the lack of sufficient study of actual practice to determine what causes
the successes and the failures. The principles governing the construction of large information
systems are as yet not well understood because these systems lack the solid scientific foundation
that informs the construction process for physical systems; e.g., buildings and bridges. The
development processes used today for IT-based systems are insufficiently predictable and lack
the measurements and standards needed to provide high confidence guarantees. While there have
been many impressive successes, the failure rate remains astronomically high. To build high-
confidence distributed systems that are interconnected with other networked systems remains a
challenge. While building today's systems is already challenging, tomorrow's systems will be
even more dynamic (both at the hardware and software levels), even more interconnected, and
even more exposed to an unknown environment.

Needed Research

Information technology urgently needs a more solid scientific base for the system
development process. There is a great need for models of distributed environments and of the
process that will develop high-confidence systems in those environments. Empirical study of
what works and does not work must be done. With these three in place—a solid scientific base,
appropriate models, and empirical studies—the development and implementation of new
processes can be done in an informed way, meaningful measures and metrics can be established,
and real progress can be made to keep pace with the changing environment. The new process
models will incorporate building manageable information systems from components while
forging high confidence through engineering discipline and integrated analysis, test, validation
and verification methods. The results of all the other research called for, particularly that on
composition, decomposition, formal methods, and validation, must be integrated into a number
of appropriate process models that produce, along with a product, a confidence rating that is
meaningful and acceptable to the targeted user community.

Benefits

The best tools and techniques cannot guarantee high confidence without a development
process that assures use of the tools, adherence to standards, appropriate measurement, and
validation. Confidence in the tools and techniques will not be achieved without improvement in
the scientific basis for information-system construction. The benefit of this research is, therefore,
increased understanding of the construction methods that we manipulate and the ability to
integrate the results of other research into a working whole, involving people, platforms, tools,
environments, and management. Without successful research in this area we cannot expect
consistent, repeatable development of high-confidence systems over a broad spectrum of
applications.

In order to fully realize these benefits significant changes in engineering practice will be
necessary, for example development teams may need to be restructured to include expertise in



HCSS Research Needs 28 1/10/01

formal methods in addition to designers, coders, testers, and analysts. Furthermore, process steps
must be adapted to take advantage of complementary technologies such as formal methods and
testing.



HCSS Research Needs 29 1/10/01

PART 3:  HCSS ENGINEERING AND EXPERIMENTATION

In order to successfully implement this research, it is necessary that the resulting technology
be hardened for practical use and that it be evaluated experimentally.  The purpose of the HCSS
Engineering and Experimentation component is to develop robust public domain reference
implementations and to conduct demonstrations of High Confidence Software and Systems
technologies for significant applications.  These efforts would aid in technology transition by
illustrating both high-confidence systems solutions and the assurance evidence produced during
development.   The following sections outline areas in which reference implementations and
application experiments would be particularly useful.  These should be understood to be
examples of work that would be suitable for this component rather than a precise list of topics to
be undertaken.

3.1  SOFTWARE CONTROL OF PHYSICAL SYSTEMS

The flexibility of software has resulted in both greatly enhanced system capability and
greatly increased dependence on software correctness. Technological advance depends on
information technology and increasingly complex control systems. For example, highly
coordinated operation and mode transition are required for physically coupled subsystems such
as fuel delivery, steering, and braking in an automobile. This entails coordination of operating
region feasibility constraints and cooperative management of dynamically changing control
authority. The feasibility of advanced national capabilities such as intelligent vehicle highway
systems or the high-speed civilian transport and the safety, quality, and competitiveness of
electronically controlled U.S. consumer products, medical devices, etc., depends critically on
high-confidence control systems that can exploit software for more robust and capable systems.

Status

However, an engineering gap (and consequently, an assurance gap) exists between the
physical design of an aircraft, train or automobile and the design of the software that controls the
system. For example, a controlled system may be required to perform in several modes of
operation. During engineering development the set of control laws that manage system operation
within a single mode are systematically designed. Computer-assisted design environments are
able to generate software that correctly implements the mathematics of these laws. However, the
software logic to manage the transition of the system among modes, the coordination of
interacting controllers, and the interaction with operators, lacks this sound engineering basis.
Control systems typically are implemented in an inflexible hierarchy of control loops that make
adaptation and reconfiguration difficult. Controller code is notorious for being poorly structured
and difficult to understand.



HCSS Research Needs 30 1/10/01

Needed Research

Reference systems building blocks are needed to enable routine, high-confidence
implementation of control systems. The systems technologies should have a rigorous basis and
robust design. For example, recent research in hybrid systems provides a theoretical framework
that combines formal descriptions of the continuous and discrete (logical) properties of a system,
and enables reasoning using rigorous design tools such as model-checkers, verifiers, and analysis
tools. Implementation technology is needed for hybrid systems. Approaches are also needed that
systematically transfer information and models used in designing physical systems into rigorous
system implementations.

Benefit

This research will provide reference implementations of software system building blocks that
can be used in high confidence control systems. It will also integrate technologies for reasoning
about and building digital control systems, providing software control assurance that is grounded
in the physical design of the system to be controlled. This research will illustrate high-confidence
implementation technology for a ubiquitous and technologically critical class of software. The
resulting technology will enable a wide range of complex, high-confidence, future systems.

3.2  HARDWARE AND SOFTWARE PLATFORMS

The research challenges being addressed by this HCSS engineering experiment are in the
area of high-assurance hardware and software platforms. The goal is to develop an HCSS
reference implementation for a hardware verification environment based upon a loosely
integrated collection of existing tools such as cycle simulation, model checking, theorem proving
and other automated analysis techniques that accept designs specified in a hardware design
language (e.g., VHDL) as their input. This body of tools will provide a practical proof-of-
concept for hardware verification. The result will unify ongoing work at a number of institutions
and will provide a common environment that is crucially needed in the development of a
successful methodology for formally verified design.

Status

The cost of hardware design errors becomes greater as more functionality is integrated onto a
single chip. This cost is measured in terms of increasing costs for engineering changes, and in the
increasing proportion of engineering resources devoted to simulation in order to find and correct
design errors before fabrication. This cost is now becoming acute, as design teams often have
several verification engineers for each design engineer. Most important is the cost of delayed
production due to increased engineering effort required for design verification.

The problem in developing high-assurance hardware designs rests in the increasing
complexity of hardware implementations. While the conceptual intent of the hardware
component is still relatively clear (e.g., encryption or signal processing), the implementation of
these components in current design technologies is becoming increasingly difficult.



HCSS Research Needs 31 1/10/01

Work in the hardware verification area is ongoing. Industry is focusing on equivalence and
model-checking methods that are able to provide high-assurance at a conceptually low level of
design. Academia is developing general theorem proving technology for hardware design that
may be transferable to industrial practice in the near future.

•  Model checking is very effective when the design is represented at the ‘bit’ level, or
when a related bit-level design is available. It has the advantage that the check is
automatic, and useful properties of the design can be checked.

•  Theorem proving methods have the advantage that they provide a detailed check on
the designer’s reasoning, and that these checks can be carried out at any level of
abstraction. So representations of the “same” design can be verified correct from top-
level down to a detailed gate level with assurance that integrity is maintained between
levels.

Formal verification tools allow a designer to prove that a circuit design meets a given
specification for all possible input patterns. In many cases they also provide a faster “debugging”
capability. The difficulty is that formal verification algorithms and techniques are becoming
increasingly domain specific, and there are strong mathematical reasons for believing that this
must be so. Given that verification tools are becoming increasingly specialized toward one aspect
of design or another, the engineer wanting to benefit from formal verification is faced with a
significant problem. That is, although the engineer has many tools available that can solve
specific aspects of the overall verification problem (e.g., arithmetic circuits or bus protocols);
these tools cannot be used effectively in concert. This is because each tool requires the design to
be represented in a specialized form that makes explicit the information the tool needs in order to
do its work.

The effort proposed herein is not being performed by industry, as they do not address the
verification of hardware designs in a standard design language, such as VHDL, from a high-level
Instruction Set Architecture (ISA) down to the Register Transfer Level (RTL). Furthermore,
current industrial research in formal methods applied to hardware design is centered on
techniques that are not as thorough or rigorous as those envisioned to be developed, under
HCSS.

Needed Research

This effort will focus on the integration of formally based tools into a unified hardware
verification environment. Such an environment will make available to the hardware designer
three types of tools that support formal specification and design verification: design-rule
checkers, model checkers, and theorem provers. Perhaps more important than the tools is the
construction of enhanced design libraries that include for each reference component, a
specification, one or more implementations, and assurance that design rules have been met, and
that the designs satisfy the specification.

The effort will demonstrate that HCSS technologies can efficiently be made part of the
hardware design process by continuing to develop techniques based upon an IEEE standard
design language, VHDL. Such a common hardware-description language for verification,
synthesis, and simulation tools will allow existing verification and synthesis algorithms, and



HCSS Research Needs 32 1/10/01

future techniques, to be applied to the verification of a single design. Using formal verification
technology allows support for any number of VHDL-based design tools and methods. Adding
support for formal reasoning to practical digital system design and unifying the addition with
existing CAD tools requires that flexible interfaces be provided so that design data can flow
between tools easily. This must be done without requiring the designer learn about the particular
data format and support standard hardware description languages such as VHDL and Verilog,
both IEEE standard languages. In the future, additional verification or automated design tools,
particularly those supporting verified hardware-software interaction (co-design for high
assurance), should be investigated and treated in the same manner.

This effort will not be performing basic research in formal methods. Formal verification
techniques have been successfully applied in a variety of example verification efforts and will
serve as the basis for this effort. The measure of success for integrating formal verification with
CAD tools will be the ease with which hardware designers familiar with current hardware
technologies can incorporate formal methods in their work.

Benefits

Completion of this effort will provide a method and a reference implementation for formally
based design verification and implementation of hardware components. It will enable future
systems that exploit reconfigurable hardware, and will enable better hardware-software co-
design. The methodology embodied in this reference implementation would provide increased
assurance in hardware design that could be used by commercial hardware producers to achieve:

•  Verification at all levels of design abstraction

•  Decreased engineering cost and time-to-market

•  Faster adoption of new tools & techniques

•  Ability to leverage tool efforts of many researchers

•  Greater cooperation among researchers on advanced techniques

3.3  HIGH MOBILITY SYSTEMS

High mobility systems are characterized by large numbers of nodes (ranging from small
devices to large systems) communicating over heterogeneous networks (ranging from high-speed
optical fibers to low-bandwidth wireless and satellite links). Such systems are becoming
increasingly important to high confidence applications such as transportation (intelligent
highways, train control), medicine (remote patient monitoring, remote surgery), robotics, and
national security (small unit operations, mine countermeasures).

Status

Mobile networked devices are becoming ubiquitous in society and the field of mobile
computing has spawned considerable research in recent years. While this research has led to



HCSS Research Needs 33 1/10/01

technology offering improvements in bandwidth and reliability as well as support for quality-of-
service and disconnected operation, attention has been focused primarily on exchange of
information between mobile devices. As the mobile computing landscape expands to include
sensors, actuators, and control systems that must operate under stringent real-time, security, and
reliability constraints, the existing technology base will prove to be inadequate to support the
requirements of high-confidence mobile systems. Aside from the low bandwidth and intermittent
connectivity issues, the highly dynamic nature of such systems (e.g., ad hoc networking,
sensitivity to environmental disturbances) poses special challenges for high confidence.

Needed Research

Critical issues include the support for real-time control over potentially interruptible
connections; rapid, secure reconfiguration through ad hoc networking techniques; and dealing
with unreliability due to power constraints and environmental disturbances. Such issues must be
addressed through: adaptation strategies that allow reconfiguration in the mobile environment;
innovative uses of redundancy and work partitioning; and application-level solutions that allow
continued, autonomous, real-time operation during periods of disconnection  (e.g., through
extrapolation of previous sensor data streams).

Benefits

This task will demonstrate that high confidence design principles and methods can be
effectively employed in the challenging environment posed by highly mobile systems, admitting
a range of new applications such as remote surgery and cooperating mobile robots that were not
previously conceivable.





HCSS Research Needs 35 1/10/01

PART 4:  HCSS DEMONSTRATIONS AND PILOTS

Government services and systems are obliged to protect the privacy and safety of citizens.
Federal agencies might engage in a Pilots and Demonstrations category of research in order to
further adoption of high confidence technologies in Federal systems. The purpose of this
component of the research would be to spur application of high confidence technologies to
critical systems in the Federal government.  ITR&D research agencies and other Federal
agencies could partner to fund pilot projects critical to digital government or to an agency’s
mission.



HCSS Research Needs                                              34                                                               1/8/01


