Emerging Directions for High Performance Computing Software & Tools Research and Development

Dr. Frederica Darema
DARPA
Outline

- Motivation
 - Application trends
 - Computing platform trends
- Overview of Existing Application Support SW
 - Language, Compilers, Tools, Libraries
- New Technology Needed (NOTE: This portion of the presentation is included under the title: A Distributed Computing Support Environment)
 - application programming technology
 - application composition technology
 - system analysis technology
- Summary
Application Directions

Past
- Mostly monolithic
- Mostly one programming language
- Computation Intensive
- Batch
- Hours/days

Present / Future
- Multi-Modular
- Multi-Language
- Multiple Developers
- Computation Intensive
- Data Intensive
- Real Time
- Few Minutes/hours
- Visualization (real time)
- Interactive Steering
Platform Directions

Past
- Vector Processors
- SIMD MPPs

Present
- Distributed Memory MPs
- Shared Memory MPs

Future
- Distributed Computers, Heterogeneous Platforms
 - Heterogeneity
 - architecture
 - node power
 (supernodes, PCs)
 - Latencies
 - variable (internode, intranode)
 - Bandwidths
 - different for different links
 - different based on traffic

<table>
<thead>
<tr>
<th>Distributed Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPP</td>
</tr>
<tr>
<td>NOW</td>
</tr>
<tr>
<td>SP</td>
</tr>
</tbody>
</table>

Darema -4
Systems Software/Hardware Architectural Framework

Applications/Users

Languages
Compilers
Libraries
Tools

Visualization
Scalable I/O Data Management Archiving/Retrieval Services

Collaboration Environments
Authentication/Authorization Dependability Services

Other Services . . .

Systems Management (OS)

Distributed, Heterogeneous, Dynamic Computing Platforms and Networks

Application

API & Runtime Services

Global Management

Computing Engine

Components Technology

Memory Technology
CPU Technology
Device Technology

Darema -5
Programming Languages/Environments

Based on SPMD Model

- HPF (Fortran D, CM-Fortran, Vienna Fortran)
- MPI (PVM)
- HPC++, CC++(C*, data parallel C, pC++)
Compiler Technology
- data independence
- task independence
- program transformation
- interprocedural analysis
- data locality/blocking
- techniques for latency tolerance & management
- run-time compilation
- inspection-execution approach

Industry Efforts
- Portland Group, IBM, APR, PSR
Compiler Research Example
Matrix Multiplication

Without Blocking

1 Processor code
 for (i=0; i<N; i++) {
 for (k=0; k<N; k++) {
 r = X[i][k];
 for (j=0; j<N; j++)
 Z[i][j] = Z[i][j] + r*Y[k][j];
 }
 }

With Blocking

1 Processor code
 for (kk=0; k<N; k+=B)
 for (jj=0; jj<N; jj+=B)
 for (i=0; i<N; i++)
 for (k=kk; k<min(kk+B-1,N); k++) {
 r = X[i][k];
 for (j=jj; j<min(jj+B-1,N); j++)
 Z[i][j] = Z[i][j] + r*Y[k][j];
 }

![Graph showing speedup vs number of processors for Matrix Multiplication with and without blocking]
Parallelized Regions

- without interprocedural analysis
- with interprocedural analysis
National Compiler Infrastructure (NCI)

Parallelization
Locality Opt
Object-oriented Opt
Scalar Opt
Machine Opt

SUIF

ZIF_{sui}

ZIF_{ML}

ZIF_{EDG}

ZIF_{Ada}

Scalar opt
Machine opt

SUIF
Zephyr
Zephyr (optional)
Existing software

Alpha
x86
C/Fortran

Machine code
Performance Tools

- Emerging applications are
 - Dynamic, with adaptive behavior
 - Distributed, network-based computations
 - Long-lived, with evolving characteristics
- Very difficult to understand execution behaviors
 - New generation of tools needed
 - Deep compiler/tool integration
 - Real-time adaptive resource control
 - Direct manipulation via virtual environments
 - Multi-level analysis (hardware and software)
Performance and Debugging Tools

- **Debugging Tools**
 - FORGExplorer (Applied Parallel Research)
 - Total View (Dolphin Inc.)
 - Mantis (Split-C parallel debugger)
 - ...

- **Performance Monitoring/Display Tools**
 - Pablo
 - Paradyn
 - AIMS
 - Nupshot (Upshot)
 - VAMPIRtrace
 - VT
 - ...

Example of Pablo Display
Hartree-Fock Chemistry Code I/O Dynamics
Increase Performance:

- Highly optimized architecture specific versions for common codes (BLAS)
- Lower barriers hide implementation so that not everyone has to be a specialist
- Increase portability (vendors implement standard libraries)

Numerical Example:

- BLAS loops
- LINPACK 1st generation algorithms
- LAPACK 3rd generation algorithms
- SCALAPACK parallel algorithms
Examples of Library Performance

Radar Cross-Section Modeling Benchmark

Linpack–HPC Benchmark

Over Time

Gflop/s

Year

Cray Y-MP (8)

Fujitsu VP-2600 (TMC CM-2 (2048))

NEC SX-3 (4)

Intel Paragon (6788)

Fujitsu VPP-500 (140)

TMC CM-5 (1024)

Hitachi CP-PACS (2040)

Intel ASCI Red (7024)

Cray Y-MP (8)

Distributed Simulation

Fluid Dynamics

Image Processing

Sonar

Over Time

Gflop/s

Year

91 93 95 97

0 100 250 500 750 1000

Darema -14
Examples of Libraries

- LINPACK, EISPACK
- LAPACK
- ScaLAPACK
 - linear solvers, dense & sparse
 - eigen solvers, dense & sparse
- FFT-PACK
- P_ARPACK
- //ELLPACK
- NetLib
- PETSc
ScaLAPACK: A Portable Linear Algebra Library For Distributed Memory Computers

Design Issues and Performance

Goal: Port LAPACK to distributed-memory environments

- Efficiency
 - Optimized compute and communication engines
 - Block-partitioned algorithms (Level 3 BLAS) utilize memory hierarchy and yield good node performance

- Scalability
 - As the problem size and number of processors grow

- Reliability
 - Whenever possible, use LAPACK algorithms and error bounds

- Portability
 - Isolate machine dependencies to BLAS and the BLACS

- Flexibility
 - Modularity: Build rich set of linear algebra tools: BLAS, BLACS, PBLAS

- Ease-of-Use
 - Calling interface similar to LAPACK

Many of these goals have been achieved through the promotion of standards for computation (BLAS, PBLAS) and communication (PVM, MPI)
• **File Systems**
 – SIO, MPI-I/O
 – AFS
 – DFS, NFS, Portable Parallel File System
• … but …
 – Flat files are not sufficient
 – Standard DBMS technology not sufficient

 – … important technology area, needs research and development
Unitree Archival Data Storage System
Who’s Doing What?

Development/Industry
- **System Vendors**
 - robust, implementations for standard computer languages
- **Independent S/W Vendors**
 - aggressive optimization front ends, customized back-ends

Research/Agencies
- **NSF**
 - few uncontrolled, unmanaged grants
- **DARPA**
 - large, focused efforts
- **DOE, NASA, NSA, NOAA, EPA**
 - Mission Driven
Performance Modeling

Applications

Application
API & Runtime Services
Global Management
Computing Engine
Components Technology

Performance Engineered Design Technology

(DiSCoS) Distributed Computing Support

Collaboration Environments
Mission Support Environments
Security Dependability Survivability Services
Shared Storage Models
Other Services . . .

Distributed Systems Management

Distributed, Heterogeneous, Dynamic, Adaptive Computing Platforms and Networks

Memory Technology
CPU Technology
Device Technology

Components Technology