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1 Executive Summary

The High Energy and Particle Physics Experimental program at Caltech is
focused on answering fundamental questions about the composition of the
universe at the level of the most elemental particles of matter, and how they
can help us understand the intricacies of space and time. In doing so, we
also probe the farthest reaches of the universe seeking out the nature of
dark matter and any connections with dark energy. The program includes
pioneering research on the detailed characterization of the Higgs boson and
searches for physics beyond the Standard Model (e.g., supersymmetry, dark
matter, new force carriers) at the highest energy and intensity hadron col-
lider (LHC and HL-LHC), on neutrino science, specifically the elucidation
of lepton masses and flavor mixing through precision measurements of neu-
trino properties, on searches for new physics at very high mass scales through
high-precision measurements (e.g, neutrinoless conversion of muons to elec-
trons); searches for violation of charge-parity symmetry in leptons, with im-
plications on the evolution of the early universe. The program includes a
strong instrumentation component with development of novel detector, elec-
tronics, and computation technologies. The group has strong collaborative
ties and partnerships with the Jet Propulsion Laboratory as well as other
National and International Laboratories, including Fermilab in the US and
CERN in Europe. The group is also pioneering research and applications
in emergent intersecting areas with nuclear physics, materials science and
relevant directions of quantum information science. The Caltech HEP group
is also involved in high-performance computing (HPC) and high-throughput
software-defined networking (SDN) as well as distributed or grid computing.
In all the areas of our fundamental physics research we find critical utility
and application for AI methods, as well as a dire need for further funda-
mental and applied research into AI, specifically in the areas of
fundamental machine learning problems like interpretability, bias,
controllability, visualization and causality. The leading industry efforts
on AI are under-investing (at best) in these topics, and there is a pressing
need for technical progress and leadership. We believe that through AI re-
search for science, such challenges can be addressed in a transparent and
significant way.

As we seek to use AI to derive new knowledge and understanding about
the physical world, it is crucial for the AI methods to be interpretable by
humans and able to build on prior physical knowledge. Therefore, we see the
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development of models that are able to reason about the physical world in a
causal way as high-priority, high-impact direction of research. The HEP pro-
gram is particularly well-placed to participate in research in causal modelling,
as we have at our disposal vast amounts of data backed by well-established
quantitative models based on experimentally verified physics, namely the
standard model (SM) of particle physics.

It is important that provisions are made to publish the full datasets used
for any new AI developments in our field, such that the growing AI research
community can be engaged. We envision a two-pronged approach of contin-
uing programs such as the Compact Muon Solenoid Open Data program and
related initiatives to release the full datasets collected and simulated by the
experiments, as well as releasing specific benchmark datasets and models for
specific problems of high interest such as particle tracking, b-quark identifi-
cation or Higgs boson decay identification to enable cross-validation of new
results by a wider community of researchers.

We find strategies 1 (fundamental research AI research into causal mod-
els), 5 (shared datasets) and 6 (standards and benchmarks) to be among the
most important directions for future AI research and believe investment in
these will have wide-ranging impact on using AI for knowledge discovery and
beyond.

2 Introduction
In this reply, we provide the viewpoint and comments of the Caltech Compact
Muon Solenoid HEP group to the Request for Information on the 2016 AI
R&D Strategic Plan.

The Caltech group is actively pursuing data-intensive fundamental re-
search on high-energy physics with AI methods and deep learning in particu-
lar used throughout. Fundamental research into AI for knowledge discovery
at the Caltech group is made possible by the unprecedented scale and com-
plexity of the data generated at the LHC and recorded by the multipurpose
detector experiments, coupled with the uniquely detailed and predictive un-
derlying physics models arising from quantum field theory accessible through
well-tested theory and simulation. This combination is specific and unique
for data-intensive physical sciences and can propel the development of AI
methods that go beyond a statistical description of the results, with the
goal of incorporating causality and learning effective models from fewer data
points.
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3 Summary of AI Group Activities
Using the latest data from the CMS experiment at the LHC, we study the
nature of the Higgs boson discovered in 2012, look for signatures arising
from possible BSM physics such as SUSY or lepton flavour violation, de-
velop reconstruction and analysis methods for anomaly identification to look
for processes which may otherwise escape detection, develop new methods
for the identification of signatures from heavy flavoured quarks and the re-
jection of pileup arising from background processes and develop distributed
computational methods for the analysis workflows. Below we describe re-
search activities in the group that employ AI methodologies. For the pro-
gram described below we are collaborating and interacting at various levels
with machine intelligence groups at Fermilab, CERN, DeepMind, JPL and
Caltech Computer Science colleagues, as well as various hardware industry
vendors (such as NVIDIA, IBM, Unity3D and Microsoft to mention a few).

Higgs analyses Detailed studies of the Higgs boson discovered at the LHC
are among the highest priority deliverables for Run 2 of the LHC, as ulti-
mately knowledge about the interactions of the Higgs boson and the shape
of the Higgs potential will shed light on the Universe evolution and the en-
ergy scale of BSM physics. Very recently, with major contributions from
our group, the Higgs has been observed to interact with top quarks. The
relevant analyses involve combinations of classification DNNs based on sig-
nal and background process simulation, as well as theory-driven statistical
analysis based on physics models. The HEP community has reacted to this
work and developed parallels between the ML and theory-driven approaches
that may result in more powerful ML techniques for the study of processes
where simulation samples can be complemented with theory. We continue
developing these methods for the upcoming di-Higgs flagship analyses that is
expected to probe the shape of the Higgs potential, as well as the Higgs decay
to muons, which will confirm the mass generation mechanism for fermions.
In an ML approach for these analyses the precise understanding of systematic
bias introduced by the ML selection is crucial in order to extract physically
meaningful results. This project depends on progress in fundamental AI
research, open datasets and cross-validation.

Anomaly detection In recent years, the variational auto-encoder (VAE)
has been widely used as a powerful deep generative model in various chal-
lenging tasks, such as anomaly detection, video generation, and image com-
pression, due to its ability to capture rich probability distributions from data.

3



The model, consisting of an encoder and a decoder, aims to maximize the
marginal log-likelihood of given data with respect to the model’s parameters.
Many extensions to this model have been proposed to enrich the distribu-
tions in the latent space. In our group, we extend this method to LHC-scale
datasets.
The goal of this project is to search for new physics at the LHC by train-
ing a VAE on known physics processes and developing a statistical test for
isolating outlier events not predicted by common BSM models for further
analysis. Besides advancing the LHC discovery program, we have the poten-
tial to benefit AI research more widely by developing autoencoder methods
on complex data with a causal structure not found in many other benchmark
datasets.

Pileup simulation, mitigation In order to maximize the collected lumi-
nosity and thus the effectiveness of the LHC, the machine is operated in a
mode where on average 40-80 simultaneous and independent proton-proton
interactions take place during one bunch crossing of the collider, with the
number of interactions (pileup) expected to increase to 200 in the HL-LHC
phase of the project. Most of these proton-proton collisions happen at low
transverse momentum and represent well-understood interactions from QCD,
therefore they must be effectively removed in the data analysis step. Classical
rule-based removal methods perform adequately at low pileup occupancy, but
scale poorly for the future operating conditions. Recently, we have demon-
strated the usefulness of ML methods based on a novel graph representation
of the collision data, which allow the interesting high transverse momentum
interactions to be filtered with significantly higher efficiency compared to
traditional methods. Graph representations of the data and graph neural
networks (GNN) allow features of the underlying data-generating physics
process to be taken into account in the ML method. Similarly to the ad-
vances of computer vision by using convolutional neural networks (CNN),
ML methods that are able to encode symmetries of the underlying system,
such as GNNs, can have wide-ranging effects on the physical sciences.

Double-B-tagger In searches for new physics at the LHC it is critical
to distinguish single-jet objects that originate from the merging of the decay
products of Higgs bosons decaying to heavy-flavour quarks at high transverse
momenta, from jets initiated by single partons that are characteristic of back-
ground processes. The main direction of research in this area is to use DNNs
to improve the efficiency and better suppress the backgrounds in signatures
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involving Higgs boson decays to b-quark jets at the CMS detector. This
involves developing new neural network architectures for the classification
problem, taking into account the fundamental physics of the data-generating
process. We develop further an interaction network (IN) architecture (orig-
inally proposed by Google DeepMindfor learning about simple physical ob-
jects and relations) as an experimental neural network tagger. The use of
the IN at the LHC further allows the complex system of interacting particles
to be decomposed in terms of individual objects and the relations or interac-
tions between the objects. The IN is a generalization of a graph-based neural
network with integrated physics simulation. Our research into implementing
an interaction network provides the first working model of a general purpose,
learnable physics engine in particle physics. It will be crucial to validate this
method more widely on publicly-available datasets.

HPC optimization The Caltech group operates an LHC Tier-2 comput-
ing center with around 300 high-performance production-grade servers con-
sisting of around 8000 CPU cores, 15 TB of memory, 5 PB of hard disk space
made available to the US LHC community and the LHC researchers more
widely. All the components of the data center generate a flow of logging and
metrics data which is recorded in a time series database and can be correlated
to overall performance of the system as measured by well-established stan-
dardized testing, as well as measurements of the site performance in terms
of number of LHC events processed and efficiency of resource usage. In ad-
dition to optimizing the energy efficiency and thus cost effectiveness of the
data center,this rich data flow allows the work in the datacenter to be opti-
mized in various ways, either by predicting or mitigating imminent hardware
or software failures or by scheduling workflows between servers and between
users to better optimize the utilization of the cluster.

Smart Switches Multipoint computer networks such as the worldwide
LHC Grid or the Tier-2 internal network experience resource contention when
several accessors seek to use a limited amount of bandwidth by oversaturating
network links. Traditionally, custom heuristics have been used to optimize
specific networks, however, as any model-based approach, they tend to be
static, overly specific and dependant on highly accurate input data. By
taking advantage of modern network switching hardware such as the Barefoot
Tofino (smart switch developed by AT&T), large amounts of flow metrics can
be collected and acted upon in real time. In our group, and in collaboration
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with the Palo Alto Foundry and Fermilab, we are investigating the possibility
of using deep learning to optimize network flows in conjunction with such
smart switches, using the Tier2 and local networking expertise as a test-bed.
This involves the prediction of future network flows based on past data in a
time series of flow rates across network ports, as well as a control theory and
reconfiguring the network dynamically for optimal resource usage. This may
lead to the development of future networking hardware able to dynamically
adapt based on past flows without manual intervention or reconfiguration.

AI Computing Operation Due to large amount of data produced at
the LHC and the subsequently large dataset of simulated events required to
perform analysis of the data, there is the need for a large set of computing
resource in the form of the LHC grid. The LHC-grid will grow significantly
in the next decade, primarily by addition of HPC resources to the network of
computing centers contributing. Any distributed computing system is bound
to temporary failure that can lead to significant amount of failed workload
which currently is reviewed and operated on by a group of human operators.
Our work within the CMS computing infrastructure aims at automatizing
this task to the highest possible level, with the use of AI to learn from the
operator and produce useful prediction of actions to be taken. This work is
carried out within the field of Human/AI interaction and is crucial to realizing
the LHC physics program at the horizon of the HL-LHC and further more
to provide efficient usage of HPC resource used within the context of HEP.

Deep Learning Distributed Training and Optimization Training
deep neural networks using the stochastic gradient descent technique is a
computing intensive task rendered tractable by using general purpose graphic
units (GP-GPU). Despite significant speed up, training a full network to
convergence can raise to several days. We have developed an mpi based
distributed training framework for the two major deep learning pythong
framework (Keras and pytorch) to harvest the full capacity of our computing
servers with up to 8 GPU per node. We have published and bench-marked
this software at various supercomputer facilities displaying a fair scaling with
the number of nodes in use. We have extend our framework to perform hyper-
parameter optimization of neural networks. This optimization can use up to
several thousands of nodes and take advantage of the exa-scale computing
facilities in the US such as ORNL and others.
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Optimizing Simulation with Evolutionary Algorithms Existing tunes
for Monte Carlo event generators are commonly the result of a time-consuming
manual effort that requires extensive expert knowledge. Since the discovery
of new physics relies on discrepancies between simulated and experimen-
tal data, it is crucial to tune event generator parameters to minimize er-
ror against existing data, thus increasing the visibility of new phenomena.
We have developed an automated framework in which existing Monte Carlo
tunes are improved by evolutionary algorithms, enabling fast tuning on arbi-
trary experimental datasets and observables. We compare the performance
and evaluation time of several evolutionary algorithms and benchmark them
against Bayesian optimization. Ultimately, our results show that the combi-
nation of evolutionary algorithms with existing tunes can speed up the tuning
process of future event generators, as well as providing a general yet effective
method for creating detector-specific tunes. We plan on going further with
this technique with data from the LHC for tuning of CMS simulation.

Charged Particle Tracking with Deep Learning This is work based
on the HEP.TrkX DOE/ASCR/HEP project, assembled as a consortium of
LBNL, Fermilab and Caltech. The project aims at exploring applications
of machine learning and deep learning to the challenge of charged parti-
cle tracking in the horizon of the High Luminosity LHC (HL-HLC). The
currently used algorithm for charged particle tracking are using Kalman fil-
tering techniques to perform the pattern recognition of particle trajectories
through clouds of hits deposited in the detector. These algorithms are scal-
ing worse than quadratically with the hit density, and are known to reach a
computation limitation for the HL-LHC. We have developed several models
to perform tasks of charged particle tracking and we are continuing the in-
vestigation using the scaling of graph neural network approaches. Due to the
hit density in the detector expected for the HL-LHC era, the models we are
training are growing in size and require a large amount of computing resource
to converge. We aim at leveraging our knowledge of distributed training at
exa-scale super computing facilities in the US to arrive to our goals.

Quantum AI While the topic of Quantum AI is covered under the Na-
tional Quantum Initiative, benchmarking of Quantum AI developments rests
within AI efforts. In our group, we have demonstrated that we can use ex-
isting quantum annealers to speed up the optimization of classical machine
learning classifiers. This was achieved by recasting the learning process of
a Higgs physics problem, as a quantum annealing problem of finding the
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ground state of an Ising spin model, solved using a D-Wave quantum com-
puter of a thousand qubits. Although we provided only a proof of concept
so far (published in Nature), using quantum annealing would possibly allow
the ML classifiers to be optimized using less data and with more resilience to
overtraining compared to classical approaches, while still being interpretable.
Additionally, quantum annealing that has been demonstrated to outperform
classical simulated annealing may be useful for other optimization problems,
including tracking at the HL-LHC and computational biology.

4 Recommendations for the Strategic Plan

We strongly support the high-risk, high-reward long-term investment in fun-
damental AI research (Strategy 1). It has been pointed out that moving
towards general or strong AI that is able to learn solutions to a large variety
of tasks from a comparably small amount of examples (as is the case for bi-
ological intelligence) may well require causal modelling of the world beyond
a statistical analysis of correlations and associations. As a specific exam-
ple, it has recently been demonstrated that introducing physics-informed
constraints in the optimization process can result in faster and more data-
efficient learning. We find that scientific data such the LHC data, can provide
benchmarking for such developments.

As we develop solutions to the computational challenges of the LHC from
AI, for example in addressing the problem of scaling multidimensional par-
ticle trajectories tracking to high-occupancy environments, it is vital to ana-
lyze the computational costs from the perspective of algorithmic complexity
and further improve our understanding of the capabilities and limitations of
AI solutions, taking into account available and upcoming hardware such as
highly parallel GPU or FPGA devices or biologically-inspired platforms such
as neuromorphic chips. We work together with industry partners such as
nVidia to benchmark recent GPU devices in our computing facility.

The LHC project, serves as a testbed for the development AI methods
where very large amounts of data have to be reduced to meaningful con-
clusions and measured physical quantities with systematic biases that are
minimal and understood. Interpretability, fairness and a reduction of bias
are therefore necessary for any AI-based approach to provide meaningful
knowledge about nature. We plan to collaborate with researchers from the
AI domain to guarantee this for ML applications at the LHC. Concretely, we
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will establish benchmark datasets for the physics use-cases so any proposed
AI methods can be cross-validated and improved independently by the sci-
entific and AI community. In comparison with many other fields, the data
collected at the LHC should not be subject to significant privacy or copyright
constraints, thereby making it possible to share with a wide community, as
demonstrated by the CMS Open Data project that has been engaging re-
searchers from outside the physics collaboration for original research in AI.
As already done through the Kaggle HiggsML challenge and the TrackML
challenge we plan to further bring in expertise from the AI research com-
munity for the domain-specific data of the LHC and therefore foster useful
collaboration through open datasets with relevant metadata and descrip-
tions. Therefore, we believe that furthering Strategies 5 and 6 is particularly
important for the development of AI-based science.

In closing, we find a strong incentive for collaborations across scientific
academic and research institutions with government and industry, with target
to address pressing challenges in advanced AI research such as interpretabil-
ity, controllability, fairness, bias and causality. High energy particle physics,
among other sciences, offers a valuable testbed due to the computation re-
quirements and massive data it offers. Practically such efforts will call for
i) accessibility and availability of the US HPC centers and associated scien-
tific datasets, ii) promoting and funding dedicated exchanges and interac-
tions between data science and domain sciences iii) funding of local R&D
computing facilities in academic and research institutions including National
Laboratories for prototyping AI techniques and scientific applications iv) tar-
geted workforce development with training students, postdocs and faculty in
the sciences to understand, use, benchmark and further develop AI methods
produced by dedicated AI industries.
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