
CSIA RFI Responses, January 15, 2019

__

Update to the 2016 Federal Cybersecurity Research and Development

Strategic Plan RFI Responses

DISCLAIMER: The RFI public responses received and posted do not represent the

views and/or opinions of the U.S. Government, NSTC Subcommittee on

Networking and Information Technology Research and Development (NITRD),

NITRD National Coordination Office, and/or any other Federal agencies and/or

government entities. We bear no responsibility for the accuracy, legality or

content of all external links included in this document.

https://www.nitrd.gov/nitrdgroups/index.php?title=CSIA-RFI-Responses-2019

RFI Response: Federal Cybersecurity R&D Strategic Plan
Evidence-based Secure Development Practices

Dr. Sam Weber
Carnegie Mellon University CyLab

samweber@acm.org

January 15, 2019

Thank you for the opportunity to provide input to the Federal Cybersecurity R&D Strate-
gic Plan. This submission is a response to question 4, “What challenges or objectives not
included in the 2016 Strategic Plan should be strategic priorities for federally funded R&D
in cybersecurity?”

This submission argues that “Evidence-based Secure Development Processes” should be
a strategic priority and a critical dependency in the upcoming strategic plan.

Over the decades there has been enormous progress in cybersecurity technology. Ul-
timately, though, the nation’s cybersecurity posture rests upon practitioners correctly de-
signing, implementing and maintaining their systems. Unfortunately, while cybersecurity
challenges have been mounting, knowledge about secure development processes has not been
keeping pace.

For example, Acar et al [1] have shown that existing cryptographic libraries are incredi-
bly difficult for practitioners to use correctly. Despite the fact that all of their experimental
participants were experienced programmers, 20% of the functionally-correct code that they
produced and thought was secure was, in fact, not. One implication of this is that a high
percentage of government-funded cryptographic technology is unable to be successfully de-
ployed.

As another illustration of this problem, Wang et al [5] studied the mechanisms provided
by Facebook and Microsoft to allow single-sign-on on third-party applications. (For exam-
ple, web pages that allow users to sign-on using their Facebook ids.) They discovered that
the majority of real-world, deployed, applications used these mechanisms incorrectly, caus-
ing security vulnerabilities – 67% of web pages using Facebook sign-on did so improperly!
Therefore the problem is not limited to cryptographic libraries, but a general problem in
secure development that even major companies have difficulty handling.

Traditionally the assumption has been that “bugs are bugs”: security bugs are like other
kinds of bugs and will be addressed by improvements in software engineering techniques. This
assumption has been disproven: Morrison et al [4] shows that vulnerabilities are discovered
later in the development cycle and are more likely to be resolved by changes in conditional
logic than non-security defects. Camilo et al [2] found that there was only a weak correlation
between non-security bugs and vulnerabilities and that characteristics such as source lines of
code and number of features were more related to security bugs. They also found that files

1

with the highest non-security defect density did not intersect with the files with the highest
security vulnerability density. Zaman et al [6] showed that security bugs are involve more
developers and impact more project files than non-security bugs and have more complex
fixes.

The conclusion is that security engineering is not the same as regular development: se-
curity raises issues that aren’t well-addressed by traditional development practices. Our
current state of knowledge concerning security engineering is depressingly but accurately
summarized by Danezis:

In security engineering we have quite a few case reports, particularly relating to
specific failures, in the form of design flaws and implementation bugs. We also
have a set of methodologies as well as techniques and tools that are meant to
help with security engineering. Which work, and at what cost? How do they
compare with each other? What are the non-security risks (cost, complexity,
training, planning) associated with them? There is remarkably little evidence,
besides at best expert opinion, at worse flaming, to decide. This is particularly
surprising, since a number of very skilled people have spent considerable time ad-
vocating for their favorite engineering paradigms in the name of security: static
analysis, penetration testing, code reviews, strong typing, security testing, secure
design and implementation methodologies, verification, pair-coding, use of spe-
cific frameworks, etc. However, besides opinion it is hard to find much evidence
of how well these work in reducing security problems. [3]

What is needed, then, is evidence-based secure-development methodologies. Not only should
practitioners be able to adopt scientifically-validated development practices, but the reliance
on evidence allows the community to successively improve and refine said practices.

Furthermore, such work is a critical dependency: the inability of practitioners to effec-
tively design, implement and maintain secure systems is a continuous inhibitor. Furthermore,
the innovations fostered by the other portions of the Strategic Plan require appropriate de-
velopment methodologies to be realized in actual systems.

Again, thank you for the opportunity to provide this feedback.

References

[1] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and C. Stransky.
Comparing the Usability of Cryptographic APIs. IEEE Symposium on Security And
Privacy, 2017.

[2] F. Camilo, A. Meneely, and M. Nagappan. Do Bugs Foreshadow Vulnerabilities? A
Study of the Chromium Project. The 12th Working Conference on Mining Software
Repositories, 2015.

[3] G. Danezis. Security engineering: What works? https://conspicuouschatter.

wordpress.com/2014/12/18/security-engineering-what-works/, 2014.

2

https://conspicuouschatter.wordpress.com/2014/12/18/security-engineering-what-works/
https://conspicuouschatter.wordpress.com/2014/12/18/security-engineering-what-works/

[4] P. J. Morrison, R. Pandita, X. Xiao, R. Chillarege, and L. Williams. Are vulnerabilities
discovered and resolved like other defects? Empirical Software Engineering, 23(3):1383–
1421, 2018.

[5] R. Wang, Y. Zhou, S. Chen, S. Qadeer, D. Evans, and Y. Gurevich. Explicating
SDKs: Uncovering Assumptions Underlying Secure Authentication and Authorization.
In USENIX Security, pages 399–414, 2013.

[6] S. Zaman, B. Adams, and A. Hassan. Security versus performance bugs: A case study on
firefox. In Proceedings of the 8th Working Conference on Mining Software Repositories,
2011.

3

