
Scaling to New Heights Workshop, PSC, May 2002: A Summary 
 
Motivation 
The goal of supercomputers dedicated to science is to enable the solution of critical 
scientific and engineering problems which would otherwise be intractable. In a previous 
era, supercomputers were characterized by special purpose processors, whose 
performance greatly exceeded that of commodity processors. Today, supercomputers are 
largely built on commodity processors, and their strength comes from aggregating a large 
number of processors, and linking them with high-bandwidth, low-latency networks. We 
understand well how these computers can be used as capacity engines. The issue we 
wished to investigate was their use as capability engines- what can be achieved by having 
these resources co-located, and closely coupled as opposed to loosely coupled? 
Exploiting this capability means developing codes that scale efficiently to very large 
processor count. Today, the leading supercomputers have thousands of processors. New 
and alternative architectures are emerging such as “processor-in-memory” and 
“embedded computing” architectures.  Industry is making large investments in the 
adaptation of these and other new technologies to high performance scientific computing. 
These new computers are shortly expected to have 10,000 to 100,000 processors. 
 
The goal of this workshop was to examine practical mechanisms for scaling applications 
for closely coupled high-end distributed-memory architectures. For example, in this 
context we were not interested in parameter search problems, which can easily be 
distributed over many loosely coupled machines.  
 
Sample issues 
Workshop organizers identified a set of sample issues that they invited participants to 
address. However, participants were encouraged to identify and discuss other issues as 
well. The sample issues included: 
• What are the characteristics of applications that scale well, in computation, data, and 

I/O? It is permissible to scale the problem size as the number of processors increases. 
• What are the resource needs of emerging applications (e.g., what is the balance of 

computation to I/O, say for data base access or data mining) relative to “traditional” 
floating point intensive applications.   

• What are indicators of bad scaling (e.g. writing to single files, collective operations, 
all-to-all communications)? 

• What tools exist to help users achieve better scaling (e.g. Vampir)? Note, we are not 
interested here in single processor optimization, except insofar as that may impact 
scaling.    

• What tricks exist to achieve better scaling (e.g. issue receives before sends, 
asynchronous communications, writing one file per PE, prefetching)? 

• What is the status for parallel math and I/O libraries that already exist or are being 
developed?  What is expected to happen with these in the coming months and years? 

• What are the prospects for automating better scaling, as one automated vectorization, 
and some parallelization? 



• What types of fault tolerance and checkpoint/restart strategies have been implemented 
in applications codes?   

• From the viewpoint of the users/researchers, what are the systems software 
requirements for large systems? 

 
Workshop Participants 
Sponsored by the NSF and DOE’s Office of Science, and organized by their leading-edge 
centers (NCSA, PSC, SDSC, ORNL and NERSC), the workshop included invited and 
contributed talks, a poster session, and a panel. Input was sought from tool developers, 
people with enlightening case histories, and others with insights into techniques which 
will make scaling easier and more effective. Ninety-one participants from universities, 
research centers, and corporations around the country attended the workshop, May 20 and 
21, at PSC.  
 
Invited speakers were selected on the basis of their known achievements in this field. 
Some effort was made to balance presentations by universities, industry, and national 
laboratories. There were 6 invited speakers and 7 submitted papers selected for 
presentation during the meeting (see below).  
 
The Program 
The invited speakers and their topics were: 

• Laxmikant Kale, University of Illinois: An Object Based Approach to Developing 
Scalable Applications: Challenges and Techniques 

• William Shelton, Oak Ridge National Laboratory: Scaling of First Principles 
Electronic Structure Methods on Future Architectures 

• Jim Demmel, UC Berkeley: Scaling in Numerical Linear Algebra 
• Paul Woodward, University of Minnesota: Scaling to the TeraGrid by Latency 

Tolerant Application Design 
• Manish Gupta, IBM T.J.Watson Research Center: Challenges in Developing 

Scalable Software for BlueGene/L 
• David E. Keyes, Old Dominion University: Understanding the Parallel 

Scalability of An Implicit Unstructured Mesh CFD Code 
 
The accepted submitted papers were: 

• Susanne M. Balle, Compaq Computer Corporation: A New Approach to Parallel 
Debugger Architecture 

• Laura C. Carrington, San Diego Supercomputer Center: A Framework for 
Application Performance Prediction to Enable Scalability Understanding 

• Alan Heirich, Compaq Computer Corporation: Scalability in Large-Data 
Scientific Visualization 

• Fabrizio Petrini, Los Alamos National Laboratory: Scaling to Thousands of 
Processors with Buffered Coscheduling 

• James C. Phillips, University of Illinois at Urbana-Champaign: NAMD: 
Biomolecular Simulation on Thousands of Processors 



• Henry Tufo, Argonne National Laboratory: High Performance Spectral Element 
Methods for Simulation of Transition in Vascular Flows 

• Theresa Windus, Pacific Northwest National Laboratory: NWChem: 
Computational Chemistry for Large Numbers of Processors 

 
Furthermore, the following contributions were presented as Posters. 
• The Advanced Computational Testing and Simulation Toolkit (ACTS):  What can ACTS do for 

you? Leroy A. Drummond and Osni A. Marques, Lawrence Berkeley National Laboratory 
• Highly Scalable Inversion: Omar Ghattas, Carnegie Mellon University and John Urbanic, 

Pittsburgh Supercomputing Center 
• Performance Monitoring Tools on the TCS: Roberto O. Gomez and Raghu Reddy, Pittsburgh 

Supercomputing Center 
• The NEOSIM Neural Simulation Kernel: Greg Hood, Pittsburgh Supercomputing Center 

and Nigel Goddard and Fred Howell, University of Edinburgh 
• Scalability Issues for Software Tools, Padmanabhan Iyer, Etnus 
• Architecture, Algorithms and Applications: NNSA's Research Agenda for 

BlueGene/L:  Robert K. Yates, Jeffrey S. Vetter, Mark K. Seager and Lynn Kissel, 
Lawrence Livermore National Laboratory 

• Hidden Cost of Memory Management in Asynchronous Communication: Joel M. Malard and 
R. D. Stewart, Pacific Northwest National Laboratory 

• PAPI: Performance Application Programming Interface: Shirley V. Moore and Dan 
Terpstra, Innovative Computing Laboratory, University of Tennessee 

• Strategies for Scaling Parallel I/O on GPFS: David Skinner, NERSC/Berkeley Lab 
• Scalability of FETI/Salinas on ASCI Machines: K. H. Pierson, M. K. Bhardwaj, G. M. Reese, 

D. M. Day, and T. F. Walsh, Sandia National Laboratories 
• Fluid Flow on a Computer: Scaling in High-Reynolds-Number Turbulence: P. K. Yeung, 

Georgia Institute of Technology and K. R. Sreenivasan, University of Maryland 
• Scalable Computing at the Cellular Level: Jung-Hsing Lin, Nathan A. Baker, and J. 

Andrew McCammon, San Diego Supercomputer Center 
 
Finally, a plenary Panel Session led by Bill Camp of Sandia National Lab wrapped up the 
meeting. The panelists were Laxmikant Kale (UIUC), Sergiu Sanielevici (PSC), John 
Towns (NCSA) and Paul Woodward (University of Minnesota). 
 
Approaches Discussed 
The talks probed a wide variety of issues for scientific application developers, utility 
software developers, system architects and system operators. 
 
Dr. Kale presented an object-based methodology of seeking the optimal division of labor 
between the programmer and a standard library of reusable parallel components. The 
programmer is responsible for dividing the computation into a large number of pieces, 
independent of the number of processors and typically larger than the number of 
processors. The standard library charm++, developed by Dr. Kale’s group, will then 
automatically map the computational tasks onto the processors, using techniques such as 
measurement based load balancing. This exploits such ideas as prioritizing remaining 
tasks, so that one executes those most likely to be needed (avoiding those not likely to be 



needed in speculative execution; overlapping communication and computation; 
aggregating small messages to reduce latencies. The successes and challenges of this 
approach were illustrated by a variety of applications to molecular dynamics, rocket 
simulation, finite element modeling, and particle collision detection codes. Performance 
on existing machines such as the TCS was discussed, as well as the emulation of future 
machines such as IBM Blue Gene/G. 
 
Dr. Shelton discussed how a new algorithm for first-principles electron level simulation 
of complex materials was designed from the ground up (physics approach, algorithm, 
implementation) to achieve linear scalability while relying on linear algebra routines that 
are always well optimized by system vendors. The resulting LSMS (locally self-
consistent multiple scattering) code was the first full application code to sustain more 
than 1 Teraflop (1998 Gordon Bell prize winner) and now sustains 4.6 Teraflops on 3,000 
processors of TCS. 
 
Dr. Demmel focused on the fundamental building blocks of numerical scientific 
application codes: linear algebra routines. He discussed fundamental research in 
numerical mathematics and in computer science, aimed at making these routines scale 
efficiently to very large processor counts. Specific topics included ScaLAPACK, a 
parallel distributed dense linear algebra library; sparse direct and iterative solvers; 
automatic performance tuning of numerical kernels using table lookup on previously run 
examples to decide on memory access patterns and blocking sizes; and multigrid methods 
on irregular meshes.  
 
Dr. Woodward addressed the issues of programming applications that can be made 
latency tolerant, efficiently utilizing the Teragrid as a capability system with thousands of 
processors.  He observed that most current algorithms depend on low latency memory 
and networks, which would not run well on Grids and Clusters of inexpensive machines. 
The new approach he proposes, called SHMOD/SHMON (shared memory on 
disk/network), eliminates latency dependence by decomposing the problem domain into 
Grid Bricks, each with its own data context. The computation is thus decomposed into 
independent Grid Brick update tasks, each of which can execute to completion as soon as 
its data context is ready. Tasks are ordered so that there are no barriers and a new task is 
always ready to fire. Like Kale, he emphasized having many more tasks than processors, 
and doing speculative execution. Applications to 1024^3 and 2048^3 PPM turbulence 
runs with real-time visualization were presented. 
 
Dr. Gupta presented the system architecture of the future IBM Blue Gene/L system, 
which will be capable of delivering 360 Teraflops using 65,536 processors. Several 
programming models for the dual-CPU compute nodes will be supported: in 
communication coprocessor mode one CPU will be responsible for computing and the 
other for communications, which is good for communication-intensive applications. In 
virtual node mode, compute-intensive applications can use both CPUs to run MPI 
processes. The communication infrastructure is layered, supporting MPI as well as the 
development of new application-level communication libraries. The compiler designed 
for BG/L is capable of such feats as finding parallel operations that match SIMD 



instructions in the user’s Fortran, C or C++ code. System self-optimization and self-
healing features were presented, utilizing a dynamic database of correctable errors as 
indicators of problematic components, along with support for very high performance I/O 
and application emulator performance results. Having a reduced kernel for the many 
compute nodes will minimize problems associated with unwanted O/S activity.  
 
Dr. Keyes discussed the case history of the PETSc-FUN3D toolkit for solving partial 
differential equations (Gordon Bell Special Category winner, 1999). This effort applied 
principles such as the “owner compute” rule under the dual constraints of minimizing the 
number of messages and overlapping communications with computation, creating 
gather/scatter operations based on runtime connectivity patterns, and using profiling data 
to optimize performance in communication and memory hierarchy. Keyes stressed the 
importance of understanding one’s algorithm in terms of many parameters such as 
memory bandwidth, internode latency, and network diameter. While processor scalability 
may not be a problem in principle (assuming the interprocessor network is scalable in 
hardware and protocol) synchronization is always a bottleneck. Memory latency is not a 
problem, provided enough bandwidth is available to cover it; but memory bandwidth is a 
major bottleneck. Load-store units may be a bottleneck if applications are not properly 
load balanced, and low frequency of floating point instructions is a bottleneck intrinsic to 
unstructured problems. Dr. Keyes went on to discuss the application of these insights to 
his current DOE SciDAC project, Terascale Optimal PDE Simulations (TOPS).  
 
The contributed talks presented case studies in application engineering (NAMD 
molecular dynamics, NWChem quantum chemistry, spectral CFD, large-scale distributed 
computer graphics) and tool development (large-scale parallel debugger, application 
performance prediction framework). The Posters illustrated the issues and topics 
summarized above based on a wide range of efforts and projects.     
 



 Lessons Learned 
The process of extracting the ideas most likely to guide the computational science and 
engineering community’s effort to achieve scalability began with the workshop’s 
concluding Panel session, and continued when PSC, NCSA and SDSC organized a Birds 
of a Feather session on this topic at SC2002 in Baltimore (November 2002).  
We concluded that the important principles are as follows: 
1. All application components must scale 
2. Control granularity; Virtualize 
3. Incorporate latency tolerance 
4. Reduce dependency on synchronization 
5. Maintain per-process load; Facilitate balance 
6. Use good algorithms 
 
These, of course, have always been the principles of designing efficient parallel 
applications; their importance merely becomes much more important as we enter the 
domain of thousands of processors.  
 
The work of participants such as Kale, Woodward and Keyes stresses the importance of 
controlling granularity. One should define a problem in terms of a large number of small 
objects independent of  the processor count. This “virtualization” also facilitates static 
and dynamic load balancing.  
 
In general it was felt that latency was not as limiting as bandwidth. While there are many 
latency hiding techniques (e.g. prefetching for regular algorithms), very few techniques 
for overcoming small bandwidth are available. This is also true for processor/memory 
bandwidth. To reduce the impact of network and memory latency, one should overlap 
communication and computation, and pipeline larger messages. As Woodward points out, 
the maxim “Don’t wait, speculate!” applies to application design just as it does to high-
performance processor design. On the other hand, many latency hiding techniques 
increase the amount of computation carried out (e.g. unnecessary speculative execution, 
or increased writes).  
 
It can be proven that the cost of synchronization increases with processor count, so that 
truly scalable codes must be asynchronous. This is not easy to reconcile with the 
demands of regular communication patterns, but the negative effects of synchronization 
are especially apparent in heterogeneous systems such as those made available on a Grid. 
One can postpone the transition to asynchronous algorithms if one uses homogenous co-
located clusters. 
 
The programmer should not try to pre-specify the load balancing.  Dynamic process 
management (load balancing) requires distributed monitoring to be provided by the 
system, along with mechanisms to feed load measurements back to the runtime 
application code. The run-time system should also be able to combine many messages 
into one (for example, if multiple objects on one processor are each sending messages to 
objects on another processors). Conversely, sometimes messages are too long, and 



computation on the receiving processor could begin as soon as the first part of the 
message was received.  
 
It is important that scaling efficiency never be obtained at the expense of per-processor 
performance. Optimization must begin with a strong effort to use each processor as 
efficiently as possible, exploiting its memory architecture and other features, while 
always using the efficient algorithms. Improvements in flop count associated with less 
efficient algorithms are seldom worthwhile. Improving data layout to increase locality 
can have significant impact. The computational problem should always scale with the 
processor count, so that each processor always has plenty of work to do. Camp pointed 
out that as algorithms scale, they become less well conditioned, requiring a larger number 
of iterations, which defeats scaling. 
 
 A number of tools are being developed to assist in these efforts, including automated 
algorithm selection and optimization (such as ATLAS from the Dongarra group and 
BeBoP from the Demmel group) and performance prediction frameworks such as PmaC 
from SDSC.  On the other hand, it was generally perceived that performance monitoring 
and debugging tools were still not up to the task of dealing with codes using thousands of 
processors. Compaq/HP indicated some steps for improving scaling and reducing 
information overload presented to the user by systems originally targeted at a few 
processors, but much work remains. Moreover, we need to develop applications 
frameworks so that computing on such systems is feasible for a wide set of users, and not 
just the ‘hero’ programmers. 
 
Regarding new machine architectures, several points were made. Processor/memory 
bandwidth has not kept up with increased processing speed. Next generation processors 
should focus on increasing memory bandwidth. Moreover, on systems with thousands of 
processors, a reduced operating system on compute processors would improve 
performance and predictability. This is being planned for Blue Gene/L. Since the 
probability of component failure grows with processor count, one will need more robust 
ways to design algorithms and detect errors. Standard checkpointing will not suffice. One 
will need internal consistency checks to trap undetectable two-bit errors; one will need 
proactive ways to anticipate component failure.  
 
Dissemination 
The Proceedings of the workshop were immediately made available online, at 
http://www.psc.edu/training/scaling/index.html . The presentation of lessons learned, 
given at the SC2002 BOF in November, is also available via this URL. 
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