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Biological SwarmsBiological Swarms
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Collaborative Robotic SwarmsCollaborative Robotic Swarms
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Autonomous Swarms Autonomous Swarms ––
Networked ControlNetworked ControlNetworked ControlNetworked Control
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The InternetThe Internet
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Biological NetworksBiological Networks

E l f bi l i l t k [A] Y t t i ti f t bi di t k [B] Y t t i

8

Examples of biological networks: [A] Yeast transcription factor-binding network; [B] Yeast protein
-protein interaction network; [C] Yeast phosphorylation network ; [D] E. Coli metabolic network ; 
[E] Yeast genetic network ;  Nodes colored according to their YPD cellular roles [Zhu et al, 2007]
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Networks and Networks and 
Networked SystemsNetworked SystemsNetworked SystemsNetworked Systems

Physical

Internet backbone
(Lumeta Corp.)

Vehicle, robot networks

Logical

Internet: North American cities
(Chris Harrison)

Trust
(J Golbeck - Science, 2008)
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OutlineOutline

• Multiple interacting dynamic hypergraphs –p g y yp g p
four challenges

• Networks and Collaboration -- Constrained 
Coalitional Games

• Trust and Networks
• Component-based network synthesis
• Topology and performance
• New probability models (non Kolmogorov)  
• Biological networks and cancer dynamicsg y
• Conclusions and Future Directions 
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Multiple Interacting Dynamic Multiple Interacting Dynamic 
HypergraphsHypergraphsHypergraphsHypergraphs

• Multiple Interacting Graphs 
Nodes agents indi id als gro ps : S

jj w
Agents network

– Nodes: agents, individuals, groups, 
organizations

– Directed graphs
Information

S
ijw : S

ii w

: jj w

– Links: ties, relationships
– Weights on links : value (strength, 

significance) of tie

Information 
network

I
klw: I

kk w : I
ll w

– Weights on nodes : importance of 
node (agent)

• Value directed graphs with 

Communication 
network

C
mnw: C

mm w : C
nn wg p

weighted nodes
• Real-life problems: Dynamic, 

time varying graphs Networked System time varying graphs,  
relations, weights, policies

11

architecture & operation
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Network Complexity: Four  Network Complexity: Four  
Fundamental ChallengesFundamental ChallengesFundamental ChallengesFundamental Challenges

• Multiple interacting dynamic hypergraphs involved
C ll b ti h h h ll b t ith h / h– Collaboration hypergraph: who collaborates with whom / when

– Communication hypergraph: who communicates with whom / when 
• Effects of connectivity topologies: 

Fi d h t l i ith f bl t d ff b tFind graph topologies with favorable tradeoff between 
performance (benefit) vs cost of collaborative behaviors
– Small word graphs achieve such tradeoff

• Components, Interfaces, Compositional Synthesis
– Network protocols – component based networing
– Compositional Universal Security

• Need for different probability models – the classical 
Kolmogorov model is not correct
– Probability models over logics and timed structures

12

y g
– Logic of projections in Hilbert spaces – not the Boolean of subsets 
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OutlineOutline
• Multiple interacting dynamic hypergraphs –

four challengesfour challenges
• Networks and Collaboration -- Constrained 

Coalitional GamesCoalitional Games
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C t b d t k th i• Component-based network synthesis
• Topology and performance

N b bilit d l ( K l )• New probability models (non Kolmogorov)  
• Biological networks and cancer dynamics
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What is a Network …?What is a Network …?

I l fi ld t t• In several fields or contexts:

social– social
– economic
– communicationcommunication
– sensor
– biological
– physics and materials

14Copyright © John S. Baras 2010



A  A  NetworkNetwork is …is …

• A collection of nodes agentsA collection of nodes, agents, …
that collaborate to accomplish actions, 
gainsgains, …
that cannot be accomplished with out such 

ll b ticollaboration

• Most significant concept for dynamic 
autonomic networks
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The Fundamental The Fundamental TradeTrade--offoff

• The nodes gain from collaborating
B t ll b ti h t ( i ti )• But collaboration has costs (e.g. communications)

• Trade-off: gain from collaboration vs cost of  
ll b ticollaboration

Vector metrics involved typically
Constrained Coalitional Games

 Example 1: Network Formation  -- Effects on Topology
 Example 2: Collaborative robotics, communications
 Example 3: Web-based social networks and services

16

● ● ●
 Example 4: Groups of cancer tumor or virus cells
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Example: Example: 
Autonomic NetworksAutonomic NetworksAutonomic NetworksAutonomic Networks

• Autonomic: self-organized, distributed, unattended
– Sensor networks
– Mobile ad hoc networks
– Ubiquitous computing

A tonomic net orks depend on collaboration• Autonomic networks depend on collaboration
between their nodes for all their functions
– The nodes gain from collaboration: e g multihop routing– The nodes gain from collaboration: e.g. multihop routing 
– Collaboration introduces cost : e.g. energy consumption 

for packet forwarding
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Example: Social Example: Social WebsWebs

• In August 2007, there were totally 330,000,000 
unique visits to social web sites (Source:unique visits to social web sites. (Source: 
Nielsen Online)
– 9 sites with over 10,000,000 unique visits
– MySpace, Facebook, Windows Live Spaces, Flickr, 

Classmates Online, Orkut, Yahoo! Groups, MSN 
Groups

• Main types of social networking services 
– directories of some categories: e.g. formerdirectories of some categories: e.g. former 

classmates
– means to connect with friends: usually with self-

description pagesdesc pt o pages
– recommender systems linked to trust/reputation
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GainGain
• Users gain by joining a coalition

– Wireless networks
• The benefit of nodes in wireless networks can be the rate of data flow they 

receive, which is a function of the received power

Pj is the power to generate the transmission and l(dij) < 1 is the loss factor
e.g:

))(( ijjij dlPfB 

log(1 ( ( ) / ))B P l d N e g

– Social connection model (Jackson & Wolinsky 1996)
0log(1 ( ( ) / ))ij j ijB P l d N 

1 or ( )ijrB V w G  
• rij is # of hops in the shortest path between i and j
• is the connection gain depreciation rate 0 1

or ( )ij i
j g

B V w G



• is the  connection gain  depreciation rate 0 1
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CostCost
• Activating links is costly. ( )

t
i ij

j N

c G C 
– Wireless networks

• Energy consumption for sending data:
RS  depends on transmitter/receiver antenna gains and system 


ijij RSdC 

t
ij N

loss not related to propagation
: path loss exponent 

• Data loss during transmission


Data loss during transmission
i is the  environment  noise  and  Iij is the interference

Social connection model
( , ) 0ij i ijC h I 

– Social connection model
• The more a node is trusted, the lower the cost to establish link 

e.g.suppose that the trust  i has on  j is  sij (between 0 and 1),    
d fi h h i f h lwe can define the cost as the inverse of the trust values

1/
ij ij
C s
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Coalitional GamesCoalitional Games

• Payoff of node i from the network       is defined asGy

It t d

   ( ) gain cost ( ) ( )i i iv G w G c G

• Iterated process
– Node pair  ij is selected with  probability  pij
– If link ij is already in the network, the decision is whether toIf  link ij is already in the network, the decision is whether to 

sever it, and otherwise the decision is whether to activate the link
– The nodes act myopically, activating the link if it makes each at 

least as well off and one strictly better off, and deleting the link ifleast as well off and one strictly better off, and deleting the link if 
it makes either player better off

– End: if after some time, no additional links are formed or severed
– With random mutations the game converges to a unique– With random mutations , the game converges to a unique 

Pareto equilibrium (underlying Markov chain states )
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Stochastic StabilityStochastic Stability

• Dynamic process is now  a finite state, aperiodic, irreducible 
M k h i ( h ) t d t t di t ib tiMarkov chain (graph process)-- steady-state distribution, 
П(g, ε).

• A network g is stochastically stable if П(g, ε) is boundedA network g is stochastically stable if П(g, ε) is bounded 
below as the error rate, ε, tends to zero; 
П(g, ε)  a >0, as ε 0.
– Stochastically stable networks must be pairwise stable networks or 

networks of closed cycles
– Stochastic stability identifies the most “robust” or easy to reach 

networks in a particular sense (the most mutations needed to get 
“unstuck”).

– The above example converges to a Pareto efficient pairwise stable 
network by considering all the possible dynamic paths between the 
left and right networks.
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Coalition Formation at the Coalition Formation at the 
Stable StateStable StateStable StateStable State

• The cost depends on the physical locations of nodesp p y
– Random network where nodes are placed according to a uniform 

Poisson point process on the [0,1] x [0,1] square.
• Theorem: The coalition formation at the stable state for n∞Theorem: The coalition formation at the stable state for n

— Given                                           is a
2

0



  
   

 

ln
,

n
V P

n
sharp threshold for establishing the 
grand coalition (  number of 
coalitions = 1).

 

— For                     , the threshold is 

less than

0 1 
2


 
 

ln
.

n
P  
 n

n  =  20
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Topologies FormedTopologies Formed
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TimeTime--dependent Gamedependent Game
• The game is time-dependent

The payoff players receive varies over time– The payoff players receive varies over time.
– The dynamics of the game can be separated in rounds of 

successive coalition expansions (or contractions).

• The dynamic coalition formation process is described as 
an iterated game
– : the action i chooses at time t.
– : the payoff of user i at time t.
– : players’ probability of playing action x at time t

t
ix
 tiv x
( )tq x : players  probability of playing action x at time t.

– : the set of users that form the coalition user i belongs to at 
time t.
user i and user j decide to activate link ij at time t:

( )q x
t
iC

– user i and user j decide to activate link ij at time t:
   1 1t t t t

i j i jC C C C
25Copyright © John S. Baras 2010



Value FunctionValue Function

• Value function for coalition C (component• Value function for coalition C (component-
wise additive value function)



 ( ) ( )i
i C

v C v g

• Value function depends on topology
Same coalition C={1 2 3} 

2 2
Same coalition C {1,2,3} 
with different topology

v({12,13})≠v({12,23,13})

31 31
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Networks and Trust Networks and Trust 

• Trust and reputation critical for collaboration
• Characteristics of trust relations:

– Integrative (Parsons1937) – main source of social order
R d ti f l it ith t it b d– Reduction of complexity – without it bureaucracy and 
transaction complexity increases (Luhmann 1988)

– Trust as a lubricant for cooperation (Arrow 1974) –Trust as a lubricant for cooperation (Arrow  1974) 
rational choice theory

• Social Webs, Economic Webs
– MySpace, Facebook, Windows Live Spaces, Flickr, 

Classmates Online, Orkut, Yahoo! Groups, MSN Groups
XYZ i d i iti– e-commerce, e-XYZ, services and service composition 

– Reputation and recommender systems
28Copyright © John S. Baras 2010



IsingIsing and Spin Glass and Spin Glass 
ModelsModelsModelsModels

● Statistical Physics models for magnetization
Orientation of each particle’s spin depends on its 

neighbors
Ising Model: behavior of simple magnets
Spin Glass Model: complex materialsSpin Glass Model: complex materials

● Interpretation:
s = {s1, s2,…, sn}  is a  configuration of  n { 1, 2, , n} g

particle spins -- sj = 1  or  -1  (up or down) 

Energy for configuration s 1 mH



   1( )

i

ij i j i
i V i
j N

mHH J s s s
T T

s

29

– Ising Model:   Jij = J for all i, j
– Spin Glass Model:  Jij depend on i,j and can be random
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IsingIsing/SG Models and /SG Models and 
GamesGamesGamesGames

• Ising/SG models can be interpreted as dynamic  (repeated) games:  
– The value of si represents whether node i is willing to cooperate or not
– each particle selects spin to maximize its own payoff

  ( ) /i ij i jJ s s T

– Ising model (Jij = J>0) : align its spin with the majority of neighbors spin
• High T, conservative agents, not willing to change, small payoffs

L T i l ff


( )

i

i ij i j
j N

• Low T, aggressive agents, larger payoffs 
– Collection of local decisions reduces the total energy of the interacting 

particles

• Inspires an approach where trust is an incentive for cooperation
– Jij can be interpreted as the worth of player j to player i

30

– decide to cooperate or not based on benefit from cooperation and trust 
values of neighbors 
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Trust as Mechanism to Trust as Mechanism to 
Induce CollaborationInduce CollaborationInduce CollaborationInduce Collaboration

● Trust is an incentive for collaboration
– Nodes who refrain from cooperation get lower trust valuesp g
– Eventually penalized because other nodes tend to only cooperate 

with highly trusted ones.
● For node  i  loss for not cooperating with node  j is a p g j

nondecreasing  function  of  Jji     , f (Jji),   
● New characteristic function is

 ( ) ( )fS
  

  
, ,

( ) ( )ij ij
i j i j

J f J
S S S

v S

● Theorem : if                                       , the core is nonempty and               
is a feasible payoff allocation in the core. 
  , , ( ) 0ij jii j J f J




i
i ijj N

x J

31

By introducing a trust mechanism, all nodes are induced to    
collaborate without any negotiation
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Dynamic Coalition Dynamic Coalition 
FormationFormationFormationFormation

Two linked dynamics
• Trust propagation and Game evolution• Trust propagation  and  Game evolution

Stability of 
dynamic 
coalitionAn example of constrained 

32

coa t o
Nash  equilibrium

p
coalitional games
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Results of Game Results of Game EvolutionEvolution

● Theorem:                                    , there exists τ0, such that 
for a reestablishing period τ > τ


   and 

i
i i ijj N

i N x J
for a reestablishing period τ > τ0
– terated game converges to Nash equilibrium;
– In the Nash equilibrium, all nodes cooperate with all their neighbors.

● Compare games with (without) trust mechanism, strategy update:

33

Percentage of cooperating pairs vs negative links Average payoffs vs negative links
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Next Generation Trust 
Analyticsy

• Trust evaluation, trust and mistrust dynamics
– Spin glasses (from statistical physics), phase transitions p g ( p y ), p

 ˆ( 1) , ( ) |i ji j is k f J s k j N  

• Indirect trust; reputations, profiles; Trust computation via 
‘linear’ iterations in ordered semirings

 ( 1) , ( ) |i ji j is k f J s k j N 

linear  iterations in ordered semirings 
a b2 31

a
2007 IEEE Leonard Abraham prize
New Book “Path Problems in

Di t t t It t d i i h ith

b
a New Book  Path Problems in 

Networks” 2010 

• Direct trust: Iterated pairwise games on graphs with 
players of many types
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Generalized Networks and Generalized Networks and 
SemiringsSemiringsSemiringsSemirings

• Combined along-a-path weight should not• Combined along-a-path weight should not 
increase :

2 31
a b

• Combined across-paths weight should not

2 31

Combined across-paths weight should not 
decrease :

a

b
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Distributed Weight DynamicsDistributed Weight Dynamics

• Path interpretation

• Linear system interpretation

i j i k k jk
t t w    

1

i j i k k jUser k

n nt W t b

  

  
 

• Treat as a linear system
– We are looking for its steady state.

H l d l h t t th iti it i

1n n

36

• Have resolved also shortest path sensitivity in 
semiring framework
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Graphs and Graphs and SemiringsSemirings

Path p
Consider undirected graph G(V,E) with edge weights                  
.

( , )c i j S

h Ti i I
1 2( , )c i i

1( , )c h i 1( , )nc i T

p

h Ti1 i2 In-1

Weight of the path p by edge composition is
  ( ) ( ) ( ) ( )h i i i i T   1 1 2 1( ) ( , ) ( , ) ... ( , )nw p c h i c i i c i T

i In1 2( , )c i i
( )h i ( )c i T

Path pi
Composing

h T
i1 i2 In-

1
1( , )c h i 1( , )nc i T

j 1 2( , )c j j
1( , )c h j

1( , )mc j T

Composing 
path weights:
w(pi )w(pj )j1 j2

jm-1
1 2( , )j j

Path pj

(pi ) (pj )

Copyright © John S. Baras 2010



Ordered   Ordered   SemiringsSemiringsgg

• Functions with semiring structure lend themselves to g
distributed computation/evaluation

• Ordered semirings is the supremum or infimum 
t d i d d i


( )S operator and                      is an ordered semigroup

• Associate with every edge (i, j) of the dynamic graph a 
semiring element c(i,j)[t]ÎS

( , , )S 

g ( ,j)[ ]
• General semiring optimal path problem on a dynamic 

graph corresponds to computing

, [ ] ( , )
* ( , )[ ] arg ( , )[ ]

S Tp P t i j p
p S T t c i j t   
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MultiMulti--Criteria Shortest PathCriteria Shortest Path
(several metrics)(several metrics)(several metrics)(several metrics)

D f th “ ” Bi t i N t k• D of a path “p” 

( ) ( )d p d i j  j2 j

Bi-metric Network

( , )

( ) ( , )
i j p

d p d i j


  j3
j1

• T of a path “p” –
i

j4
bottleneck 

( ) min ( )t p t i j

j7
J6

( , )( ) min ( , )i j pt p t i j j5
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MCOPMCOP

• The two metrics are not trivially 
blcomparable.

: ( , , ) / / ( , )Q
SDMCOP f X  P R
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Path problems on Graphs Path problems on Graphs ––
D and TD and T SemiringsSemiringsD and T D and T SemiringsSemirings

i j(d(i,j), t(i,j))

   
( , )

min ( ) min ( , )

max ( ) max min ( ) min max( ( ))

SD SDp p i j p

d p d i j

t p t i j t i j

 


 P P

   ( , ) ( , )
max ( ) max min ( , ) min max( ( , ))

SDSD SD i j p pp p i j p
t p t i j t i j

   
   

PP P

DSemiring:( {0}, min, ) R
2:

( ) ( ( ), ( )),
SD

SD

f R
f p d p t p p



   

P
P

Notions of Optimality: Pareto, Lexicographic, Max-Ordering, Approx. Semirings
T Semiring: ( {0}, min, max)  R

( ) ( ( ), ( )), SDf p p p p
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Pareto optimal paths Pareto optimal paths ––
Edge exclusion algorithmEdge exclusion algorithmEdge exclusion algorithmEdge exclusion algorithm

i jt(i,j)

• Edge exclusion – From G(V,E), remove all the edges whose     
t(i,j) > ε to obtain a graph  G’(ε)

• G’(ε) contains paths which have all  t(i,j) ≤ ε
• We can also show that G’ has all paths in G which have t(i j) ≤ ε• We can also show that  G  has all paths in G which have  t(i,j) ≤ ε

and only those
42Copyright © John S. Baras 2010



Constrained Coalitional Games:        Constrained Coalitional Games:        
Trust and CollaborationTrust and Collaboration

Two linked dynamics
• Trust / Reputation• Trust / Reputation 

propagation  and  
Game evolution

• Integrating network utility maximization (NUM) with 

• Beyond linear algebra and weights, semirings of constraints, constraint 
programming, soft constraints semirings, policies, agents

g g y ( )
constraint based reasoning and coalitional games

43

p g g, g , p , g
• Learning on graphs and network dynamic games: behavior, adversaries
• Adversarial models, attacks, constrained shortest paths, …
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Component-Based Heterogeneous 
Network Synthesisy

 How to synthesize resilient, robust, adaptive networks?
Component Based Net ork Anal sis & S nthesis (CBN)Component-Based Network Analysis & Synthesis (CBN)

 Components: modularity, cost reduction, re - usability, adaptability  
to goals, new technology insertion, validation and verification 

 Interfaces: richer functionality– intelligent/cognitive networks
 Theory and Practice of Component-Based Networks

– Heterogeneous components and compositionality
– Performance of components and of their compositions 
– Back and forth from performance - optimization domain to correctness 

and timing analysis domain and have composition theory preserving 
t ti t t ti f i b th d icomponent properties as you try to satisfy specs in both domains

 From communication to social, from cellular to transportation, from 
nano to macro networks

 Critical theory and methodology for Networked Embedded Systems, 
CyBer Physical Systems, Systems Biology
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Networks: Different Networks: Different 
Linked ViewsLinked ViewsLinked ViewsLinked Views

Networks: 

– as distributed, asynchronous, feedback 
(many loops), hybrid automata (dynamical ( y p ) y ( y
systems)

– as distributed asynchronous active 
d t b d k l d bdatabases and knowledge bases

– as distributed asynchronous computers

46Copyright © John S. Baras 2010



ComponentComponent--Based Heterogeneous              Based Heterogeneous              
Networked Systems Synthesis  Networked Systems Synthesis  y yy y

Executable 
Models

Formal 
Models

Each Block has 
Components

Performance 
Models Inspiration from Biology:

Why and how modules, motifs, etc 

Grand challenge: Develop this framework for distributed, partially 
asynchronous systems, with heterogeneous components and time     

y , ,
are created, developed and evolved?

y y , g p
semantics
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Component Based Routing  (CBR)             Component Based Routing  (CBR)             
and Networking  (CBN) for MANETand Networking  (CBN) for MANETg ( )g ( )
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MAC and Routing ComponentsMAC and Routing Components

 Objective
 Design MANET adaptable to missions with predictable performanceDesign MANET adaptable to missions with predictable performance
 Approach
 Break traditional layers to components!  Develop component-based 

models MANET that considers cross-layer dependency to improve the 
performance

 Routing Components – routing protocols like OLSR [Baras08]
N i hb Di C t (NDC)

performance
 Study the effect of each component on the overall MANET performance

 Neighbor Discovery Component (NDC)
 Selector of Topology Information to Disseminate Component (STIDC)
 Topology dissemination Component (TDC)
 Route Selection Component (RSC)

 MAC Components – based on CSMA-CA MAC protocols like IEEE 802.11 
[Baras08], and on schedules based MAC (USAP) [Baras09]

Sched ler
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 Scheduler
 MAC
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Results  Results  TodateTodate

 Realistic MANET scenarios from DARPA CB-MANET benchmarks
20 d 10 ti t 50 i d ith 20 node, 10 connections  -- up to 50 moving nodes with 
disconnections (ground and UAVs)

 Substantial improvements of performance through new NDC and 
STIDC t ( d t t diti l OLSR) b iSTIDC components (as compared to traditional OLSR) – being 
reported to MANET WG of IRTF

5/11/2010 50

PHY Layer Connectivity
Throughputs for increasing load

Copyright © John S. Baras 2010 50



OutlineOutline
• Multiple interacting dynamic hypergraphs –

four challengesfour challenges
• Networks and Collaboration -- Constrained 

Coalitional GamesCoalitional Games
• Trust and Networks

C t b d t k th i• Component-based network synthesis
• Topology and performance

N b bilit d l ( K l )• New probability models (non Kolmogorov)  
• Biological networks and cancer dynamics
• Conclusions and Future Directions 
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Distributed Algorithms in Distributed Algorithms in 
Networked Systems and TopologiesNetworked Systems and Topologies

• Distributed algorithms are essential
– Group of agents with certain abilities

y p gy p g

Group of agents with certain abilities
– Agents communicate with neighbors, share/process information
– Agents perform local actions
– Emergence of global behaviors– Emergence of global behaviors

• Effectiveness of distributed algorithms
– The speed of convergence

R b t t t/ ti f il– Robustness to agent/connection failures
– Energy/ communication efficiency

• Group topology affects group performance
• Design problem:

Find graph topologies with favorable tradeoff between performance 
improvement (benefit) vs cost of collaborationimprovement (benefit) vs cost of collaboration

• Example: Small Word graphs in consensus problems
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Design of information flowDesign of information flow

Consensus problems

1

( 1) ( ) ( )
( ) ( ( )) ( ( ) )

x k F k x k
F k I D k A k I

 

  ( ) ( ( )) ( ( ) )
( ) ( )

F k I D k A k I
F k I hL k

 
 

• Fixed graphs: Geometric convergence with rate equal to 
Second Largest Eigenvalue Modulus (SLEM)

Symmetric  communication

Second Largest Eigenvalue Modulus (SLEM)
• How does graph topology affect location of eigenvalues?
• How can we design graph topologies which result in 

d d?

53

good convergence speed?
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Small World GraphsSmall World Graphs

S Small world: SlightSimple Lattice 
C(n,k)

Small world: Slight 
variation adding nk

Adding a small portion of well-chosen links →
significant increase in convergence rate
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Mean Field Explanation and               Mean Field Explanation and               
Perturbation ApproachPerturbation ApproachPerturbation ApproachPerturbation Approach

Initial graph Final 
graphgraph

Adjacency/ F matrix Perturbed
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WattsWatts--StrogatzStrogatz
Small World networksSmall World networksSmall World networksSmall World networks

• Random graph approach g p pp
(e.g. Durrett 2007, Tahbaz and Jadbabaie 2007)

• Perturbation approach (Higham 2003 )
– Start from lattice structure G0=C(n,k)                 F0
– Perturb zero elements in the positive direction by             

for fixed             and



n
K


0K .1

– Perturb the formerly nonzero elements equally, such 
that the stochastic structure of the F matrix is 
preserved Fpreserved Fε

– Analyze the SLEM as a function of the perturbation as 
α varies
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11-- D case …D case …

• Refer to the perturbations as ε-shortcuts
• In the limit of large n :• In the limit of large n :

– For           the effect of ε-shortcuts on convergence rate 
is negligible

3 

– For          the effect of ε-shortcuts on convergence rate 
starts (spectral gap gain perturbation of same order)

– For           the shortcuts dominantly decrease SLEM

3 

2o t e s o tcuts do a t y dec ease S
– For            SLEM is very small 

• ε-shortcuts are loosely analogous to the shortcuts in Small 
World networks

1

World networks 

• a = 3 can be considered as the onset of small world effect 
with small world effect happening at α = 2

57

with small world effect happening at α  2
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Distributed exploration Distributed exploration 
of the graph structureof the graph structureof the graph structureof the graph structure

• Self-organization for better performance and 
resiliencyresiliency

• Hierarchical scheme to design a network structure 
capable of running distributed algorithms with high 
convergence speed

• A two stage algorithm:
1 Find the most effective choice of local leaders1- Find the most effective choice of local leaders
2- Provide nodes with information about their location 

with respect  to other nodes and leaders and the p
choice of groups to form

• Divide N agents into K groups with M members each

58

, select ‘leaders’   ,N K M K M N
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Distributed self Distributed self -- organizationorganization

59

Goal: design a scheme that gives each node a vector of compact global information
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Two stage semiTwo stage semi--decentralized decentralized 
algorithmalgorithmalgorithmalgorithm

• Stage 1: Determining K leadersg g
– Each node determines its social degree via local query
– Dominant nodes in each neighborhood send their degrees to the 

central authoritycentral authority
– Central authority computes their social scores

( 2 ) ( 3 )( ) ( ) (1 ) ( )   S C k S D k S D k
Choice of α determines whether leaders in star-like 
neighborhoods are preferred

( ) ( ) (1 ) ( )  S C k S D k S D k

– The central authority selects the K nodes with highest scores as 
social leaders and gives them an arbitrary order
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Algorithm (cont’d)Algorithm (cont’d)

• Stage 2: Determining the influence vectors
– Based on its order each leader takes its influence vector to be 

the fixed vector ei
– Regular  nodes update their influence vector entries:

1( 1) ( ) ( )k k k 
 

• For connected graphs, for  t large enough,      converges to the 

( )

( 1) ( ) ( )
1

i

k k k
i i j

j N ti

x t x t x t
n 

     


k
ixg p , g g , g

influence of leader k on node I

• Upon calculation of influence vectors, each regular node determines 

i

its local leader and stops its communication with neighbors who 
have other leaders

G ff

61

• Graph decomposes into two level hierarchy with efficient 
communication pattern 
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Reliability and Spanning Reliability and Spanning 
TreesTreesTreesTrees

• End to end applications
• Spanning tree as a• Spanning tree as a 

minimally connected 
graph

{1 2 }
G(V,E)
V • Τ(G) as a measure of 

robustness to losses
• References: Kelmans

1 2

{1, 2,..., }
{ , ,..., }

:  Constant link loss probability
e

n
l l l

p

V =
E =

• References: Kelmans, 
Colbourni :  # of connected components with i edges

( ): Number of spanning trees
e

N
G

i
1

Rel = N (1 )

For sufficiently large p:



 

 i e i

i n

p p p(G, )

1 1 1( )(1 G 1 1 1) Rel( , ) ( )(1 )     n e n np p p pG G
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Graph Theory for Robust                         Graph Theory for Robust                         
Network DesignNetwork DesignNetwork DesignNetwork Design

• Goal: Given a base topology add k edges from a set of 
did t h th t lt i i b fm candidates such that results in maximum number of 

spanning trees
• Number of spanning trees

1 1 11( ) ( ) det( )
Tn

iG L L   p g
• Incidence vector of an edge shows between which 

nodes it is

2

( ) ( ) ( )i
in n n


: incidence vectorif 1 0 0 0 1 
 

(1,5) 1 5

if e

f e e

e  

   15 15

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Tf f

 
 
 
 
 
 

5
1

3 4

2

• Graph Laplacian

[1 0 0 0 1]T
m

T TL D A F F f f   

1 0 0 0 1
 
  

3 4

Graph Laplacian
1

nm mn i i
i

L D A F F f f


  
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Problem StatementProblem Statement

• Goal: Given a base topology add k edges from a set of 
m candidates such that results in maximum number ofm candidates such that results in maximum number of 
spanning trees

2

1 1 11( ) ( ) det( )
Tn

i
i

L L
n n n

 


  G

• Dynamic graph process resulting from adding edges

Maximize ( ( ))
Subject to:

( 1) ( ( ) ( )) 0 1 1

G t k

G t Add G t u t t k

 

   

0

( 1) ( ( ), ( )), 0,1,..., 1
( ) ( 1), ( 1) ( ( ))

( )

G t Add G t u t t k
u t e t e t S E G t

G t

  
     
  G
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Formulation and RelaxationFormulation and Relaxation

• Goal: Given a base topology add k edges from a set of 
m candidates such that results in maximum number ofm candidates such that results in maximum number of 
spanning trees (Approach similar to Ghosh and Boyd 06)

Maximize or equivalently
m

TL x f f    1l d t
m

TL J f f 
 0

1

0
1

Maximize or equivalently

1log  det  

i i i
i

m
T

i i i
i

L x f f

L J x f f
n






 
 

   
 





0
1

log  det  

is concave in x.

T
i i i

i
L J x f f

n 

   
 



1

Subject to :
1

{0 1}

i

T

m

x k

 



• Relax to

{0,1}mx
( *) ( *)* 0 ,i

i j

x xx j
x x

  
   

 
0x 

• At maximum         has equal derivatives for positive  xi s
j

( )x
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Robust Network DesignRobust Network Design

Derivative:• Derivative:
1

0 i
1 , Chosen edge set (x 0)

m
T T

i i i i if L J x f f f i


       
 


5

1

2 1A
1

1

eff
1R ( )

i

T
i i

n

i f L J f
n





 
 

   
 


3 4

( , )ffR V   

• If feasible, add edges such that the effective 
i t di t f ll l t d d

( , )effR V 

resistance distance of all selected edges 
become equal and greater than the effective 
resistance distance between non-selectedresistance distance between non selected 
candidates 
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Special Cases Special Cases 

• Adding 2 edges (α,β) and (γ,δ)

  
 2

( (2)) 1 ( , ) 1 ( , )

( ) ( ) ( )

eff effG R R

z z z z

    



   

 G

Maximized by adding edge 
between high resistance 
distance nodes

  0

1

( ) ( ) ( ) ,

1

z z z z    



    

 

G

Maximized by adding edge to 
t i th h1[ ]ijZ z L J

n
    
 

symmetrize the graph

• Adding 3 or more edges similar: more complex terms 
due to compromising between symmetrizing the graph 
and joining nodes with the highest resistance distanceand joining nodes with the highest resistance distance
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Expander GraphsExpander Graphs

• Fast synchronization of a network of oscillators 
Net ork here an node is “nearb ” an other• Network where any node is “nearby” any other 

• Fast ‘diffusion’ of information in a network
• Fast convergence of consensus  
• Decide connectivity with smallest memory 
• Random walks converge rapidly
• Easy to construct, even in a distributed way (ZigZag graph product)Easy to construct, even in a distributed way (ZigZag graph product)

• Graph G,  Cheeger constant h(G)
– All partitions of G to S and Sc , 

h(G)=min (#edges connecting S and Sc )  / 
(#nodes in smallest of S and Sc )

• (k , N, e) expander : h(G) > e ; sparse but locally well ( , , ) p ( ) ; p y
connected  (1-SLEM(G) increases as h(G)2)
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Expander Graphs –
Ramanujan GraphsRamanujan Graphs
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Constructing Expander           Constructing Expander           
GraphsGraphsGraphsGraphs

P ibl th d• Possible methods:
– Form a random expander as a 2d-regular multi-

graph in which the set of edges consists of dgraph in which the set of edges consists of d
separate Hamiltonian cycles on APs (Law and Siu 
2003)

– Form a union of two spanning trees chosen– Form a union of two spanning trees chosen 
independently from the uniform distribution over all 
spanning trees of a complete graph, 
implementable by a random walk method (Goyalimplementable by a random walk method (Goyal 
et al. 2009)
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OutlineOutline
• Multiple interacting dynamic hypergraphs –

four challengesfour challenges
• Networks and Collaboration -- Constrained 

Coalitional GamesCoalitional Games
• Trust and Networks

C t b d t k th i• Component-based network synthesis
• Topology and performance

N b bilit d l ( K l )• New probability models (non Kolmogorov)  
• Biological networks and cancer dynamics
• Conclusions and Future Directions 
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NonNon--Commutative Probability Commutative Probability 
ModelsModels –– New LogicsNew LogicsModels Models New LogicsNew Logics

• Key idea: interaction between measurements by different 
agents and between system states and dynamics andagents and between system states and dynamics and 
measurements  (Baras, 1977)
– Now investigated vigorously in information retrieval systems (van 

Rijsbergen 2004)Rijsbergen, 2004)
– Asynchrony and concurrency

• Key challenge: understand the fundamentals of 
information collection and information flow in multi-agent 
stochastic control systems

• Witsenhausen’s model of information patterns is not• Witsenhausen s model of information patterns is not 
correct – even in its most general setting

• Need for new non-commutative probability models – new p y
logics --projections in Hilbert space
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The Setting and the ProblemsThe Setting and the Problems

• N agents, local states, local timesg
• Measurements and hypotheses supported and 

interpreted by local states
S i bl di ib d d i d i i• Static problems: distributed detection and estimation 
problems

• Simple dynamics: like in information retrieval systemsSimple dynamics: like in information retrieval systems
• Complex system dynamics: full interactions between 

measurements and measurements and controls
• Must unify the probabilistic and logical aspects in a 

consistent way (see recent results of Abbes 2005 for 
probabilistic models over systems with concurrencyprobabilistic models over systems with concurrency 
constraints)
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Models with Incompatibility Models with Incompatibility 
BuildBuild--ininBuildBuild inin

• Active interpretation of operations: can be thought of as a model for 
the combined  operation of taking a measurement and applying a 

t l l b th tcontrol law  by the agent
• Passive interpretation of operations: system’s interaction to 

measurements (used by recent results in information retrieval systems)
• We also get an interpretation of the conjunction of incompatible events

74

• We also get an interpretation of the conjunction of incompatible events
or measurements as “data fusion” or “agreement” between agents
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Final Results and FutureFinal Results and Future

• The most useful ‘practical’ model• The most useful ‘practical’ model
Finite dimensional Hilbert space, measurements to self-adjoint 

operators, states to trace one positive operators
Th bi t ff• The biggest payoff:
Our theory (extensions of above) allow the formulation of ‘design’ 
problems as convex problems over a pair of Banach spaces (one for 

t d f t l )measurements and one for controls)
• They also results automatically to introduction of ‘supervisors’
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OutlineOutline
• Multiple interacting dynamic hypergraphs –

four challengesfour challenges
• Networks and Collaboration -- Constrained 

Coalitional GamesCoalitional Games
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Biological Networks Biological Networks 
–– Our ResearchOur Research

• Characterization of biological networksg
• Discovery of elemental components (e.g. motifs) –

Modular decomposition
• Network composition from modules
• Development of a taxonomy of network structure vs

behavior vs biologybehavior vs biology
• Network dynamics and their interpretation
• Network inference and tomographyg p y
• Applications to disease pathology (e.g. cancer)
• Development of analytic/computational tools 
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Cancer and Systems Biology                Cancer and Systems Biology                
---- networks are keynetworks are keyyy

• Emergent properties at the system level – notEmergent properties at the system level not 
just at components

• Multiple-interacting networks – gene networks, p g g ,
protein networks, metabolic networks

• Network dynamics more important
• Complex diseases cause changes in network 

dynamics
• Key Question: detect these changes from 

repeated partial measurements (data) at 
different scales
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Network Inference from DataNetwork Inference from Data

• Inference of network models, from data and prior structure 
k l dknowledge

• Various types of dynamic networks: Networks of ODEs, 
Bayesian Networks, Boolean Networks, Hybrid Networksy , , y

• Stochastic Graph Processes, their representation and 
parameter/structure estimation, Time Varying MRF 

• Usage: Network level analysis to improve cancer 
prognosis (e.g. metastasis in breast cancer via sub-
networks of the protein-protein interaction network)networks of the protein protein interaction network)

• Use alterations of the molecular network in malignant cells 
to identify oncogenes (e.g. for B-cell lymphomas)
– Common alteration: upregulation of growth factor receptors (e.g. 

EGFR hyperactivated in several cancers
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Use of Network Models and Use of Network Models and 
Associated Analysis  in CancerAssociated Analysis  in Canceryy

• Develop multi-network models and use them to understand and 
d t t i l h t i ti f lldetect crucial characteristics of cancerous cells:

• Independence from external growth signaling
• Insensitivity to antigrowth signaling and evasion of apoptosis
• Limitless replicative potential
• Sustained angiogenesis and metastasis
• Example 1: Use a human protein-protein interaction network modelExample 1: Use a human protein protein interaction network model  

-- compute certain sub-networks – prove that they re good indicators 
of metastasis (used maximum mutual information and conditional 
likelihood classification) in breast cancer [Chuang et al, 2007] ) [ g , ]

• Example 2: Develop a network centric approach to distinguish 
normal from malignant cells and identify targets and effectors of 
specific biochemical perturbations , potentially useful for the p p , p y
identification of drug targets [Mani et al 2008]
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Example: Dynamic Modularity in               Example: Dynamic Modularity in               
Protein Interaction Networks                   Protein Interaction Networks                   
f B t C P if B t C P ifor Breast Cancer Prognosisfor Breast Cancer Prognosis

• [Taylor et al , 2009][ y , ]
• Dynamic structure of human interactome can be used to 

predict patient outcome
• Identify inter-modular hub proteins co-expressed with their 

interacting partners and intra-modular hub proteins co-
expressed with their interacting patternsexpressed with their interacting patterns

• Observed substantial differences in biochemical structure 
of two hub types

• Signaling domains found in inter-modular hub proteins –
associated with oncogenesis

• Analysis with breast cancer patients altered interactome• Analysis with breast cancer patients – altered interactome 
useful as indicator of breast cancer prognosis  
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OutlineOutline
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Conclusions Conclusions 

• Complex networks – multiple dynamic hypergraphsp p y yp g p
• Fundamental tradeoff between the benefit from 

collaboration and the required cost for collaboration
C li i l d k f i• Coalitional games and network formation

• Trust as a catalyst for collaborations
• Component based network synthesis• Component based network synthesis
• Effects of topology on distributed algorithm performance 
• Performance vs. efficiency – small world graphs –Performance vs. efficiency small world graphs 

expander graphs
• New probabilistic models (non-Kolmogorov)
• Biological networks and cancer dynamics
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How Biology Does IT?How Biology Does IT?
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Lessons Learned Lessons Learned ----
Future DirectionsFuture DirectionsFuture DirectionsFuture Directions

• Constrained coalitional games – unifying concept
• Generalized networks, flows - potentials, duality 

and network  optimization  (monotropic optimization)
• Time varying graphs – mixing – statistical physics 
• Understand autonomy – better to have self-

organized topology capable of supporting (scalable, 
fast) a rich set of distributed algorithms  (small world 
graphs e pander graphs) than optimi ed topologgraphs, expander graphs) than optimized topology

• Given a set of distributed computations is there a 
small set of simple rules that when given to thesmall set of simple rules that when given to the 
nodes they can self-generate such topologies?
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Th k !Thank you!

baras@isr.umd.edu
301 405 6606301-405-6606

http://www.isr.umd.edu/~baras

Questions?
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