
Advancing Software Architecture Modeling for Large Scale
Heterogeneous Systems

 Ian Gorton and Yan Liu

Pacific Northwest National Laboratory,
Richland, WA

{ian.gorton,yan.liu}@pnl.gov

ABSTRACT
In this paper we describe how incorporating technology-specific
modeling at the architecture level can help reduce risks and
produce better designs for large, heterogeneous software
applications. We draw an analogy with established modeling
approaches in scientific domains, using groundwater modeling as
an example, to help illustrate gaps in current software architecture
modeling approaches. We then describe the advances in
modeling, analysis and tooling that are required to bring
sophisticated modeling and development methods within reach of
software architects.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures –
Domain-specific architectures; D.2.2 [Software Engineering]:
Design Tools and Techniques – Evolutionary prototyping;

General Term
Design

Keywords
Software architecture, modeling, dependability

1. INTRODUCTION
In the last two decades, software architecture has become
foundational in the development of large, heterogenous software
intensive systems. The critical nature of software architecture is
well understood both in industry and research. Software
architecture pervades all phases of software development and is
the key to being able to sensibly evolve a system over its lifetime
[15].
Much of the progress in software architecture can be broadly
described as adhering to the principle of explicitly capturing
architecture design decisions, whereby design artifacts can be
expressed and communicated by human-beings, and codified and
processed by machines. This has led to a profusion of proposed
architecture design notations, architecture styles, and architecture
description languages such as xADL[9], UML, and model driven
frameworks [3,12], to name but a few.

In mainstream software architecture practices, modeling drives
the specifications of components, connectors and their overall
interactions to constitute a software architecture. Designs are
typically partitioned into various views that abstractly describe
artifacts such as system structure, behavior and deployment.
Together, the collection of views represents the logical system
architecture, and is used to guide subsequent development, often
in a highly iterative fashion.
Large scale, complex systems that drive businesses, large scale
enterprises and Internet-facing applications are invariably
comprised of a variety of off-the-shelf software platforms and
technologies such as middleware, web technologies and
databases. These infrastructural technologies provide facilities for
building application components and connecting them to the
network as services. They have been developed over many years
and provide robust, scalable components that can be tailored to
satisfy a specific application’s requirements. For these reasons,
these technologies are intrinsic in delivering the dependability
attributes of a system. However, state-of-the-art software
architecture techniques basically assume that the specific features
and capabilities of these infrastructural technologies can be
abstracted so that a uniform architecture description language can
express the design in a manner that is agonistic to specific
technologies being considered for a system.
Abstracting away the specific quality attributes that are
intrinsically supplied by underlying software platforms is a major
problem in architecture design. While at design time, application-
specific components can be logically divorced from the
underlying infrastructures, at run-time this does not hold. Hence
application run-time qualities such as performance, scalability and
reliability must be considered as a totality of the application’s
components, both application-specific and infrastructural.
Empirical studies such as [1] clearly demonstrate this, showing
the considerable variability in an application’s performance based
on the selection of Java application server technology.
The desirability of being able to analyze an architecture design
early and often in a project lifecycle has been recognized by
others. Accordingly, mainstream software architecture modeling
approaches have been augmented in numerous research projects
in attempts to capture various quality concerns. These include:
1. Annotations or profiles [2] to enrich the expressiveness of

the models. These permit quality attribute-relevant details to
be specified as properties of components or connectors;

2. Techniques and tools for transforming annotated architecture
models [12] into formats that can be either simulated or
solved using analytical models. The aim of automated

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11...$10.00.

143

analysis is to produce predictions of how the application may
perform under “what-if” scenario analysis;

3. Methods and mechanisms for building formal models into an
application so that the application behavior is guided to adapt
to changing conditions in the supporting infrastructure and in
the surrounding physical environment [4, 5];

4. Frameworks to predictably construct assemblies of
components, given components with properties that can be
objectively measured or verified by independent parties [6].

Despite all this progress, large scale software system architecture
design remains elusively in the realms of experts. State-of-the-art
software architecture research methods and tools have, with a few
notable exceptions typically in narrow application domains [7],
failed to gain traction in practice.
In this paper we argue that advances are needed to both increase
the capability and practicality of software architecture methods
and tools. Practitioners need accurate and defensible prediction
capabilities for the quality attributes of their designs before any
critical design decisions and investments are made. Another
requirement is to evaluate the uncertainty of the predictions, as
this can be used to quantify design risks.
Invariably, reasoning about complex systems requires the use of
models. However it seems unlikely that further incremental
advances in existing modeling approaches focused on the level of
component assemblies can scale for systems that are implemented
using different computing models, programming languages, or
integrated across technology boundaries. Hence, we see the need
for new theories, methods and tools that can scale up to the scope
of large scale systems. Such systems are characterized by having
multiple stakeholders, being developed over extended time
phases, and built over legacy systems to accommodate new
features. They are highly complex, distributed, and often connect
heterogeneous subsystems across organizational boundaries. New
methods and tool are needed to make it possible to model and
analyze architecture designs for such systems. Keeping these
models synchronized and relevant to the application
implementation is also crucial for long-lived applications.

2. A MODELING ANALOGY
In the design of a large-scale, heterogeneous software system,
system architects aim to translate quality attribute requirements
into a design that can potentially satisfy these requirements.
During the design process, architects are faced with multiple
dimensions of uncertainty about the dependability attributes that a
given solution can provide. Abstract models (e.g. UML) are used
to describe the key design elements, and in standard industrial
practice, the models simply serve the purpose of documentation
and communication of ideas.
From these designs, architects informally reason about the
dependability attributes of the proposed solution. Typically in
cases where there appears to be significant risks (e.g.
performance/reliability of a component), the design guides
prototyping exercises that implement key parts of the design and
validate it against requirements. In this sense, prototyping collects
concrete data about key component characteristics that is used to
evaluate and reduce the uncertainties associated with the
dependability of the proposed architecture.
Consequently, software architects expend significant amounts of
effort in modeling and validation of their designs. However the

models cannot formally exploit concrete component execution
data from prototypes to give deeper insights into the application
design through simulation or analytical techniques. For complex,
long lived software systems, this strikes us as unsatisfactory and
unlikely to lead to major breakthroughs in producing higher
quality systems at lower costs.
In many scientific fields, the approaches taken contrast markedly
with software architecture modeling. As an example, consider
Figure 1, which overviews how geoscientists model and simulate
flows of containments in subsurface groundwater flows.

Figure 1 Iterative modeling workflow for geoscientists

Geoscientists initially build 3 dimensional models of the
subsurface geology. These represent the layers of rock types in a
given area, their extents and properties, and other geological
features such as faults. These models are based on any available
geological data for the site being modeled, and require
considerable expertise to create. As it is not possible to exactly
measure the geology of the site (we can’t ‘see’ underground),
geoscientists leverage their knowledge of geology and
mathematical methods to estimate as best they can the structure of
the site. Next, they map this abstract site model to a numerical
grid, provide a set of initial conditions (e.g. river flows, daily
rainfall), and use a simulator to show how contaminants move
through the groundwater over a period of many years.
Importantly, as new data about the site geology is gathered from
field surveys and experiments, the abstract model is refined and
new simulations are performed to improve the accuracy of the
results.
Geoscientists also recognize that their model predictions are
almost always incorrect, as the models can never completely
accurately represent the subsurface geology and chemistry. For
this reason, they employ well known mathematical techniques and
frameworks to estimate realistic parameter ranges for their models
based on concrete data, and quantify uncertainty in their results
using for example Monte Carlo simulations.
The above is a very simplified description of groundwater
modeling, but many analogies can be drawn with software
architecture design. For example:

• Both create abstract models of an artifact of interest

Develop/refine
abstract model

Collect and
analyze data

Develop
numerical model
and simulate

144

• Both rely on deep levels of experience and knowledge from
the foundations of their scientific discipline

• Both rely on concrete data to inform the evolution of the
abstract model

However, the major difference lies in the refinement of abstract
models into models that can be analyzed, and the recognition that
imperfect model results require quantification of uncertainty. In
Software engineering, while model-driven development
approaches can generate technology-specific executables from
models, the level of model description required is far too detailed
for early architecture design activities. Unlike geoscientist and
scientists in other disciplines who use modeling and simulation
extensively, software architecture lacks a systematic approach for
refining abstract models into forms that can be analyzed for
attributes such as performance, scalability and reliability. We
believe that without such approaches, large scale applications will
continue to run unacceptably high levels of risks due to our lack
of understanding of the influence of architecture design decisions
on project quality, schedule and cost.

3. WHAT IS NEEDED
We see a need to conduct new research to bridge the gulf between
abstract architectural models and current and future MDD
approaches. We envision architecture toolsets that are able to
continuously integrate, manage and visualize the connections
between architecture models. The toolsets would also manage
multiple data sets obtained from tests and benchmarks on the
technologies of interest for a project, and enable architects to
construct and analyze technology-specific models of their designs
using a variety of simulators or mathematical solvers.

 depicts the major artifacts and transformations that we envisage.
Architects would initially construct an abstract model that is used
in the project exploration phase to explore design options and
communicate with stakeholders. When the initial design
stabilizes, the architect can incorporate technology-specific
component models into their design, and parameterize these
models with data representing their performance, scalability and
reliability. This data may be obtained from prototypes created by
the project team, or from data catalogues that give measures for a
component based on standard benchmarks. Finally, the architect
defines the initial conditions for the model, such as request arrival
rates, data sizes and constraints such as connection or thread
limits. This creates a model that can be fed into a simulator or
analysis tool to produce predictions about the application’s
dependability attributes.

Concurrently, techniques are needed to map the abstract model
into a Platform Independent Model (PIM) that becomes the input
to an existing MDD tool chain. This is then transformed using
standard MDD meta-models and tools into a Platform Specific
Model (PSM) by incorporating details of the target infrastructure
technologies. From this model, code can be generated to
potentially validate results from analytical models or simulations,
or to commence detailed development.

The linkages between models would be preserved by parameters
representing architecture choices, domain specific application
behavior, technology characteristics, and infrastructure computing
capacities. This would permit on-going, multi level model
manipulation to verify the dependability attributes, costs, and
other factors against the system requirements.

To achieve these goals, we envisage a research agenda
incorporating the following:

Building technology specific models. Akin to geology site
modeling to predict groundwater movement, any useful software
architecture prediction model needs to capture the execution
environment supplied by infrastructural software technologies.
Current approaches tend to model infrastructures monolithically,
and are forced to make simplifying assumptions about the
internals of the software (e.g. threading, disk accesses). This is
not sufficient to accurately predict detailed behaviors. A new
approach would leverage specific modeling approaches (such as
mathematical formulas, Petri-nets, stochastic processes,
networked graphs, or metrics in spreadsheets) for the individual
components in the infrastructure platforms. These complex
technologies comprise layers of composable services for handling
concurrency, enforcing security policies, routing messages, data
access, and so on. Each service has its own properties and
constraints that influence the architecture design, and hence must
be abstracted into separate models described by parameters. For
example, a Java Messaging Service (JMS) can be modeled as a
queuing element with parameters characterizing its message
processing rate, maximum queue size, and overheads incurred by
transactional messaging protocols.

Two different state-of-the-art practices may be exploited to build
these technology specific models. One exploits annotation and
profiling approaches [13] whereby a metamodel captures the key
entities in the technology specific models which are required for
building analytical or simulation models. Accordingly the abstract
application model is annotated by profiles conforming to the
metamodel. The transformation between the abstract application
model and the technology specific model is via the immediate
metamodel. This approach generally relies on complex model
transformation tools and metamodeling notations such as MOF.

Alternatively, Domain Specific Language (DSL) could be
developed for individual technologies leveraging frameworks
such as Microsoft’s DSL or the Eclipse EMF. Key entities in the
technology specific models become first class modeling elements,

Abstract
Application

Model

Technology-
Specific
Models

Concrete
Architecture

Models

Platform
Independent

Model

Data Platform
Specific
Model

Input to
code generators

Input to
Simulators/Solvers

Figure 2 Advanced Architecture Analysis Toolset

145

available for the application modeling. As a result, the abstract
application models and technology specific models can converge
into the same design artifact. Since the models are processed by a
DSL engine, it is possible to inform the DSL engine of how to
invoke the executable model solvers or the simulation tools from
within the design. The coupling between DSL and technology
features however, raises the challenge of making the DSL
extensible to incorporate changes as the technologies evolve.

Building concrete architecture models. A concrete model is
derived from the technology specific model reflecting architecture
design options. Design options have dependencies on the
configuration settings of the infrastructure supplied by a
technology and application components. These different settings
(such as stateful vs. stateless components) affect the behavior of
the infrastructure [8], and their effects can be absorbed into
random variables with specified distributions. These settings are
modeled as properties, constraints or functions. Different input
values for these settings can be explored in “what-if” scenarios
for the concrete architecture models to predict quality attributes.

Calibrating models with profiles and benchmarks. The above
capabilities produce predictions for the designed system in the
form of a model with parameters relating to the specific
infrastructure technology. Some of the parameters represent
tunable features of the container’s configuration such as thread
pool size, but others reflect internal hidden implementation details
of the container, which may not be measurable directly. Therefore
the solution requires running benchmarks to estimate the values of
parameters. Since benchmark measures can be compared to model
predictions, we can solve the parameterized model and determine
the values of the missing parameters. This approach is equivalent
to how geoscientists estimate parameter values for their models.

Benchmark scenarios must be carefully designed to exercise the
key elements of a specific infrastructure (including software and
hardware capacities) involved in the system design. In a manner
compatible with our ideas in this paper, research efforts (such as
[10,11,16]) have already demonstrated the utility of MDD tools to
automate benchmark generation and measurement collection. The
raw data collected may be further filtered and aggregated before
input into the model. As this procedure may requires heuristic
inputs to guide the data characterization and the solution of the
model, it remains an intriguing question to determine the extent
that this procedure can be automated and integrated with
architecture design/analysis tool chains.

Quantifying prediction uncertainty. Individual model
predictions will almost never be correct, because so many factors
can introduce errors in the modeling process These include
measurement errors, infrastructure variability, assumptions on
application behavior, and so on. In science, well understood
methods for quantifying model prediction uncertainty exist[14].
These basically generate ensembles of parameter and model
variations for execution, analyzing model outputs to determine
key sources of uncertainty and developing strategies for
efficiently reducing uncertainty. Incorporating these methods and
tools in the architecture modeling tool chain is necessary to allow
architects to effectively understand and quantify the risks in their
designs. Early research experience [17] has been reported to scope
uncertainties in domain models akin to the intrinsic models in our
proposed analysis toolset (see Figure 2), namely Abstract
Application Model and Platform Independent Model. Since the
source of uncertainties may spread several models in the analysis

toolkit, it remains a challenging issue to quantify the uncertainties
at individual models.

4. CONCLUSIONS
Several initial efforts from groups worldwide and ourselves give
us confidence that this vision of an integrated, modeling-based
approach to software architecture design is scientifically feasible.
Interestingly, technological trends too are converging to make the
problem tractable. Modeling of specific technologies and
attempting to parameterize them for an effectively infinite range
of deployment scenarios seems a massive challenge. However,
the emergence of Cloud computing, where a small number of core
hardware and software platforms are available for running
applications, potentially simplifies the challenge immensely. Such
trends make us optimistic that, for the many projects that cost
$10s to $100s of millions to develop, more rigorous software
architecture modeling practices can one day become ingrained in
practice and provide architects with a deeper understanding of
their design options at all stages in a project lifecycle.

5. REFERENCES
[1] Gorton, I., Liu, A., and Brebner, P. 2003. Rigorous

Evaluation of COTS Middleware Technology. Computer 36,
3 (Mar. 2003), 50-55.

[2] Woodside, M., Franks, G., and Petriu, D. C. 2007. The
Future of Software Performance Engineering. In 2007
Future of Software Engineering (May 23 - 25, 2007).
International Conference on Software Engineering. IEEE
Computer Society, Washington, DC, 171-187.

[3] Douglas C. Schmidt, "Guest Editor's Introduction: Model-
Driven Engineering," Computer, vol. 39, no. 2, pp. 25-31,
Feb. 2006.

[4] Zhang, J. and Cheng, B. H. 2006. Model-based development
of dynamically adaptive software. In Proceedings of the 28th
international Conference on Software Engineering. ICSE
'06. ACM, New York, NY, 371-380.

[5] Kramer, J. and Magee, J. 2007. Self-Managed Systems: an
Architectural Challenge. In 2007 Future of Software
Engineering (May 23 - 25, 2007). International Conference
on Software Engineering. IEEE Computer Society,
Washington, DC, 259-268.

[6] Wallnau, K. 2003. Volume III: A Technology for Predictable
Assembly from Certifiable Components, Technical Report
CMU/SEI-2003-TR-009, Software Engineering Institute.

[7] Ommering,R., Linden, F., Kramer, J., Magee, J., "The
Koala Component Model for Consumer Electronics
Software," Computer, vol. 33, no. 3, pp. 78-85, Mar. 2000.

[8] Liu, Y., Fekete, A., and Gorton, I. 2005. Design-Level
Performance Prediction of Component-Based Applications.
IEEE Trans. Softw. Eng. 31, 11 (Nov. 2005), 928-941.

[9] Dashofy, E. M., Hoek, A. V., and Taylor, R. N. 2001. A
Highly-Extensible, XML-Based Architecture Description
Language. In Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (August 28 - 31, 2001).
WICSA. IEEE Computer Society, Washington, DC, 103.

[10] Grundy, J., Cai, Y., and Liu, A. 2005. SoftArch/MTE:
Generating Distributed System Test-Beds from High-Level

146

Software Architecture Descriptions. Automated Software
Engg. 12, 1 (Jan. 2005), 5-39.

[11] Zhu, L., Bui, N.B., Liu, Y., Gorton, I., MDABench:
Customized benchmark generation using MDA, Journal of
Systems and Software, Volume 80, Issue 2, February 2007,
Pages 265-282, ISSN 0164-1212.

[12] Becker, S., Koziolek, H., and Reussner, R. 2009. The
Palladio component model for model-driven performance
prediction. J. Syst. Softw. 82, 1 (Jan. 2009), 3-22.

[13] D. B. Petriu and M. Woodside, "A metamodel for generating
performance models from uml designs," in 7th International
Conference on Modelling Languages and Applications,
Lisbon, Portugal, October 11-15, ser. LNCS, T. Baar,
A. Strohmeier, A. Moreira, and S. J. Mellor, Eds. Springer
Berlin / Heidelberg, 2004, vol. 3273, pp. 41-53.

[14] S. F. Wojtkiewicz , M. S. Eldred , R. V. Field , A.
Urbina, J. R. Red-horse, Uncertainty Quantification In
Large Computational Engineering Models, In Proceedings of
the 42rd AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, number
AIAA-2001-1455, 2001.

[15] Taylor, R. N. and van der Hoek, A. 2007. Software Design
and Architecture The once and future focus of software
engineering. In 2007 Future of Software Engineering (May
23 - 25, 2007). International Conference on Software
Engineering. IEEE Computer Society, Washington, DC,
226-243.

[16] Bošković, M. and Hasselbring, W. 2009. Model Driven
Performance Measurement and Assessment with
MoDePeMART. In Proceedings of the 12th international
Conference on Model Driven Engineering Languages and
Systems (Denver, CO, October 04 - 09, 2009). A. Schürr and
B. Selic, Eds. Lecture Notes In Computer Science, vol. 5795.
Springer-Verlag, Berlin, Heidelberg, 62-76.

[17] Betty H. C. Cheng, Pete Sawyer, Nelly Bencomo and Jon
Whittle, A Goal-Based Modeling Approach to Develop
Requirements of an Adaptive System with Environmental
Uncertainty, MODEL DRIVEN ENGINEERING
LANGUAGES AND SYSTEMS, Lecture Notes in
Computer Science, 2009, Volume 5795/2009, 468-483.

147

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

