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ABSTRACT

This article proposes a research agenda aimed at enabling
optimized testing and analysis processes and tools to sup-
port component-based software development communities.
We hypothesize that de facto communities—sets of projects
that provide, maintain and integrate many shared infras-
tructure components—are commonplace. Currently, com-
munity members, often unknown to each other, tend to
work in isolation, duplicating work, failing to learn from
each other’s effort, and missing opportunities to efficiently
improve the common infrastructure. We further hypothe-
size that as software integration continues to become the
predominant mode of software development, there will be
increasing value in tools and techniques that empower these
communities to coordinate and optimize their development
efforts, and to generate and broadly share information. Such
tools and techniques will greatly improve the robustness,
quality and usability of the common infrastructure which,
in turn, will greatly reduce the time and effort needed to
produce and use the end systems that are the true goal of
the entire community.
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D.2.5 [Testing and Debugging]: Testing tools
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1. INTRODUCTION
Over the past few years we have worked extensively with

multiple space physics research groups. To support their
cutting edge science research, each of these groups has had
to develop and evolve their own specialized software systems.
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As is increasingly common these days, these systems use a
component-based architectural approach in which mission-
specific components are integrated from large numbers of in-
frastructure components, including compilers, math libraries,
data management packages, communication frameworks and
simulation models.

As software engineers looking in from the outside, we
see individual groups working largely in isolation from each
other, even though the different underlying systems are com-
posed from many of the same infrastructure components.
The inevitable result is that the groups frequently duplicate
integration effort, reinvent similar code fixes, and miss out
on system knowledge gained by other groups.

We argue that these groups form a de facto component-
based software development community. Moreover,
we argue that development processes optimized for the com-
munity could be much more efficient and effective than the
current practice in which individual projects work completely
in isolation. That is, if communities can intelligently coordi-
nate their efforts and share hard-won information, then they
can greatly improve the robustness, quality and usability of
the common infrastructure. This improved infrastructure
will likewise greatly reduce the time and effort needed to de-
velop and deploy the mission-specific components, which, in
the end, is the true goal of the entire community. Finally, we
believe that development communities are common, form-
ing naturally where common needs, requirements, hardware
and industry standards lead software developers to draw on
common infrastructure components.

We, the authors of this paper, have personal experience
with communities in investigation-based sciences, in telecom-
munications and in university administration. We believe
that many others exist as well. Therefore, models, tools,
techniques and collaboration platforms that help develop-
ment projects: (1) identify the communities to which they
belong, (2) express their development goals, (3) coordinate
effort, and (4) share information, could save a great deal of
time and effort for component-based software developers.

To achieve this vision we first need to formally define
component-based software development communities, ob-
serve and document how they evolve and interrelate, and
study their development processes to understand where pro-
cess optimizations and sharing are most appropriate. Ini-
tially, we will focus our attention on testing and analysis
processes for the space physics community we have already
worked with. We see no reason, however, that this approach
could not be extended to other development processes and
communities in the future. Second, we will focus on cre-
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ating powerful new community-based, collaborative testing
and analysis processes, with shared information repositories
and collaborative tools at their core. These new collabora-
tive processes will require research advances and empirical
evaluation of tools, algorithms and computing infrastructure
to 1) model software development communities and their
systems, 2) intelligently pool, coordinate and optimize de-
centralized community resources and testing and analysis
efforts, 3) generate timely, detailed and accurate informa-
tion about the components, their inter-dependencies, con-
figurations, compile- and run-time constraints and runtime
behaviors and 4) feed this information back to community
members along with tools that allow members to conduct
their own analyses in support of their own specific needs.

2. A NOTIONAL RESEARCH AGENDA
Software engineering techniques and tools have histori-

cally been designed to apply to THE system. Increasingly,
however, there is no single system. Instead there are multi-
ple systems emerging from a complex component assembly,
organized around a large and complex design space [7]. A
system’s design space refers to the dimensions of controlled
variation that it supports, i.e., there is typically a software
base with hooks that allow controlled variation in features,
versions, algorithms, platforms, architectures, standards im-
plementations, and so forth. We believe that design spaces
have identifiable structure, and that this structure can be
leveraged to define powerful testing and analysis algorithms.
These algorithms can then be executed to efficiently and ef-
fectively test across the system’s design space. When the
systems under test are used by communities, the entire com-
munity can define the testing goals and algorithms, and can
share the effort and fruits of executing those algorithms.

To realize this vision the research community must ad-
vance in multiple directions. We will need to (1) define
modeling formalisms that capture component structures and
testing goals, (2) design new testing and analysis algorithms
for testing systems with large and complex design spaces
(3) create decentralized execution platforms that enable de
facto communities to easily work together, (4) create infor-
mation repositories for managing shared data about com-
munity components, and for keeping track of hardware con-
figurations, test cases, and test results, and (5) add higher
level algorithms and tools specifically aimed at optimizing
testing across the community.

At a high level, these advancement will likely support at
least the following key steps:
1. Explicitly model the system design space. Com-
ponent providers create design space models for their in-
dividual components. Each model exposes dimensions of
variability for that component, such as hardware platforms,
operating systems, feature sets, compile- and run-time op-
tions, etc. Infrastructure tools then automatically integrate
each individual component model with the models of the
components it depends on to create an integrated model of
the system under test.
2. Define test coverage criteria and generate test
plans. System models implicitly define all configurations
of the system to test. Since exhaustive testing is gener-
ally infeasible because of the tremendous number of possible
configurations, we must define sampling strategies over the
design space. Applying a sampling strategy to the model

yields the specific set of configurations to be tested, called
the test plan.
3. Execute the test plan in parallel across a virtual com-
puting grid. Executing the test plan involves decomposing
the test plan into independent test jobs, where each job typi-
cally focuses on one configuration or group of equivalent con-
figurations. Numerous optimizations can be applied to limit
duplicated effort, and to coordinate the activities of multiple
test plans. Tools then distribute the jobs to client machines
on the grid. The computing grid may contain different re-
source types, such as an ad-hoc federation of community-
provided resources (e.g., a desktop grid), generic centrally
managed resources, or specialized resources such as a high-
end supercomputer. The choice of resources will depend on
multiple factors, such as the component’s maturity, testing
goals, deadlines and budget, and the need for specific hard-
ware environments. However, the desktop grid option will
be extremely important for small- to mid-size communities
that lack a resource-rich central authority.
4. Execute and measure the system under test. As
the test jobs execute, execution data is collected, and the
data is returned to the information repository. The data
can include test results, coverage information, detailed crash
reports, etc. Depending on how the test plan is defined,
incremental results may be merged and analyzed to guide
subsequent iterations of the test process.
5. Store, analyze and publish results. Data from test
processes are stored in the community-accessible informa-
tion repository. Besides being used by ongoing test pro-
cesses, such data could also be analyzed and published via
standardized visualizations, which show the stability of par-
ticular configurations, the test status of the latest system
version, the effect of particular configuration parameters on
standard performance benchmarks, etc. There should also
be tools that enable community members to develop and
share their own data analyses.

3. SOME FIRST STEPS
Our research vision has three related focus areas. Each

area supports testing and analysis at a different level of
granularity. These levels are (1) testing individual sys-
tems, (2) testing component assemblies, and (3) test-
ing across the community. Testing individual systems
focuses on techniques and tools for testing systems across
their design spaces. The second focus, testing component
assemblies, breaks open a system, leveraging knowledge of
its architecture structural. That is, we view a component-
based system as an assembly of individual components and
then hierarchically test its dependent sub-assemblies up to
and including the entire component-based system under test.
Given the many different ways in which systems can be built
and configured, reuse of previously generated test artifacts
can greatly reduce overall effort. The final focus area ex-
tends component-based testing to the community by cre-
ating tools and processes that optimize testing across the
common components used by the entire community. The
results of all testing activities are stored in an information
repository that is accessible both for use in ongoing testing
processes and for use by community members.

3.1 Testing individual components
This area focuses on tools and techniques for testing indi-

vidual components across their design spaces. In this con-
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Option Settings Interpretation

COMPILER {gcc4.1.2, SUNCC5 1} compiler

AMI {1 = Yes, 0 = No} Enable Feature

CORBA MSG {1 = Yes, 0 = No} Enable Feature

run(T) {1 = True, 0 = False} Test T runnable

ORBCollocation {global, per-orb, NO} runtime control

Constraints

AMI = 1 → CORBA MSG = 1

run(Multiple/run test.pl) = 1 → (Compiler = SUNCC5 1)

Figure 1: Some QUASI options and constraints.

Figure 2: Nearest Neighbor Search.

text an individual component need not be truly monolithic.
It could contain other sub-components, but such architec-
tural information would not be used in this focus area. In
our own research we have started by developing a system
and approach currently called QUASI (Quality as a Service
Infrastructure) [11, 5, 6, 9]. QUASI’s analytical cornerstone
is a model of the design space that implicitly captures all
configurations on which test jobs might run. Configurations
then serve as parameters to generic test jobs. In actual
systems, not all option setting combinations are legal, so
QUASI also supports inter-option constraints that limit the
setting of one option based on the settings of others. Table 3
presents some sample options and constraints we have pre-
viously taken from 2M+ lines of code from the ACE+TAO
CORBA project [3]. The sample options refer to things like
the end-user’s compiler (COMPILER); whether or not to
compile in certain features, such as support for asynchronous
messaging invocation (AMI); whether certain test cases are
runnable in a given configuration (run(T)); and the level
at which to set a run-time optimization (ORBCollocation).
One sample constraint shows that if the AMI support op-
tion is turned on, then the CORBA messaging option must
be turned on. However this modeling is done, design space
models need to become first class development artifacts.

Given a design space model and generic test jobs that
operate on design space points, test processes are defined
by (1) creating programs that systematically “visit” points
in the design space, which means having a client execute
a test job in the configuration defined by that point and
having it return the results to a QUASI server, (2) defin-
ing analysis techniques that merge and analyze incremen-
tal test results, and (3) creating decision rules to dynami-
cally and intelligently steer the visitor programs based on

incoming results. In general, component providers imple-
ment application-specific test programs, while the visitor
programs that define the test process are predefined by QUASI
(advanced users can extend the set of test processes).

At execution time, QUASI test processes run on client ma-
chines making calls to a QUASI server whenever the client
is available to perform test tasks. When contacted, QUASI
uses planning technology to assign the current best test job
to that client, where “best” is application-specific and is de-
fined by the visitor programs discussed above, the state of
the test process, and the characteristics of the client machine
offering service. QUASI bundles the code artifacts, assembly
parameters, build instructions, and test-specific code asso-
ciated with the selected job. This data is sent to the client,
which executes it and returns the results for collection and
analysis, also causing decision rules to be triggered to effect
steer the overall process.

We have developed several novel test processes using the
QUASI infrastructure, some of which we not touch on. The
key point to note is that the design space model provides
a great deal of information that can be used in structur-
ing the test processes. Our fault characterization process
systematically tests system configurations, feeds the test re-
sults to a machine learning algorithm and outputs a model
describing the configuration options and settings that cause
the observed test failures. These models help developers
quickly narrow down the causes of specific failures. As one
implementation of this process we developed a search-based
strategy that uses distance measures to identify and test
the “nearest neighbors” of failing configurations, allowing
quick characterization of specific problems. We applied this
process to one version of the ACE+TAO CORBA project
with ∼115K possible configurations, using 120 CPUs in our
dedicated evaluation testbed. This process is depicted in
Figure 2. Nodes represent configurations and arcs connect
pairs of configurations that differ in the setting of exactly 1
configuration option. The dotted line surrounds a neighbor-
hood of ACE+TAO configurations that failed for the same
underlying reason. In another implementation [8, 4], we de-
veloped techniques for systematically sampling the design
space, using mathematical covering arrays [2]. A covering
array induces a configuration sample in which all t-way in-
teractions between options are observed at least once. In
a third effort, we developed algorithms based on Design of
Experiments (DoE) theory [1] to quicky determine whether
recently changed software had suffered performance degra-
dations in any system configuration [10].

3.2 Testing Component-Based Systems
Component-based systems present new challenges over and

above those found in individual components. One reason
is that the number of deployable component configurations
is very large since each component in the system can have
multiple versions, and can have complex dependencies on
multiple other components. Collectively, a system’s many
end users might deploy a large number of these configu-
rations. Additionally, components and their dependencies
can change without notice, especially if components are de-
veloped and maintained by separate groups of developers.
Finally, developers are under pressure to to support a broad
set of configurations if they want their systems to be used
as widely as possible.

In previous work, we developed Rachet, a process and in-
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Figure 3: The (partial) CDG for 4 space physics systems.

frastructure for testing component-based systems [13, 14,
12]. At a high level the process has several parts. First,
developers model the system under test (SUT) using a for-
mal representation with two parts: a directed acyclic graph
called the Component Dependency Graph (CDG) and a set
of Annotations. A CDG specifies the components making
up the system and specifies inter-component dependencies
by connecting components with AND and XOR relation-
ships. Annotations include version identifiers for compo-
nents, and constraints between components or over configu-
rations, written in first-order logic. Together, the CDG and
annotations define the set of all valid configurations for the
SUT. An example CDG for four space physics simulation
components is shown in Figure 3.

Next, developers specify the component versions to test
and specify a coverage criterion. Given a coverage criterion,
Rachet automatically produces a set of configurations that
satisfies it. Rachet then combines the produced configura-
tions into a tree data structure called a prefix tree. The
prefix tree acts as a test plan; each path from the root node
to a leaf node corresponds to one desired configuration. The
rationale behind combining configurations is that it may be
possible to reduce the overall test time by reusing partially
completed configurations on a given test machine. An ex-
ample test plan is shown in Figure 4.
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Figure 4: An Example Test Plan

Finally, Rachet executes the test plan by scheduling con-
figurations to multiple client machines and collecting results.
Instead of distributing full configurations, Rachet distributes
partial configurations, called tasks, to increase reuse of par-
tial tests that share sub-configurations (prefixes in the tree).
Again, whatever tools and techniques are finally produced,
they will need to leverage architectural dependencies and
support compositional approaches to testing and analyzing
component-based systems.

3.3 Community-Driven Testing
Community-driven testing is largely a new research area

with some tentative initial steps being taken by different re-
search and industrial groups. Substantial work will need to
be done and the best models and approaches are currently
unclear. However, we believe that any solution will likely
include system modeling, test plan generation, distributed

test plan execution, data collection, and data analysis and
publication. Below we focus on some areas in which exten-
sions are needed.
System modeling. In a community there is no central
actor who models the entire system design space, so sys-
tem modeling must be compositional. For example, compo-
nent providers first create and publish models for their own
components, providing information such as the source code
repository location, dependent sub-components, component
versions, configuration options and settings, configuration
constraints, etc. These component models are then pub-
lished for use by other components that depend on them.
Next, component owners create system models, similar to
that described earlier, but describing only the component’s
direct dependencies. They must also specify any applicable
configuration constraints.
Test plan generation. Once modeling is done, component
owners can start a test process for a given component. Tools
will instantiate a test process from the component’s models
and from all the dependent component’s models. The com-
ponent provider can then test the system and each of its
components across the full range of their configurations or
can restrict the test process to specific parts of the design
space, e.g., by limiting testing to specific versions of specific
components, or to specific configuration settings for some
of the dependent components. Component owners will then
select test coverage criteria and given this information can
then generate a test plan to be executed across the testing
grid, using virtual machines, real machines or both. Here
various optimizations are possible. For instance we could
generate the test plan to minimize new work, taking advan-
tage of the fact that some tests jobs may already have been
performed in other test processes. Or we could optimize
for broader coverage of the design space. More specifically,
the test plan avoids already tested configurations in favor of
ones not previously tested.
System execution and monitoring. Once the test plan
is generated, the test process can start. Because many test
processes are long-running, new results can be computed
between the time the test plan is generated and the time
that a specific job starts. Therefore, component providers
can specify whether to include or exclude community results
from their long-running test processes. Should they choose
to include them, then prior to executing each job, the infor-
mation repository is queried for existing results. Only if no
existing results are found would the job be executed.
Analysis and visualization. All results from executing
the test processes will be stored into the community-accessible
information repository both for later test processes and for
analysis and visualization. Based on the needs of the com-
munity members standard visualizations can be created for
popular analyses. Community members will be able to de-
veloper their own visualizations as well.

242



4. REFERENCES
[1] G. E. P. Box, W. G. Hunter, and J. S. Hunter.

Statistics for experimenters : an introduction to
design, data analysis, and model building. 1978.

[2] R. Brownlie, J. Prowse, and M. S. Padke. Robust
testing of AT&T PMX/StarMAIL using OATS.
AT&T Technical Journal, 71(3):41–7, 1992.

[3] DOC Group. ACE and TAO.
deuce.doc.wustl.edu/Download.html/, 2004.
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