
Differential Static Analysis: Opportunities, Applications,
and Challenges

Shuvendu K. Lahiri
Microsoft Research

Redmond, USA
shuvendu@microsoft.com

Kapil Vaswani
Microsoft Research

Banglalore, India
kapilv@microsoft.com

C. A. R. Hoare
Microsoft Research

Cambridge, UK
thoare@microsoft.com

ABSTRACT
It is widely believed that program analysis can be more
closely targeted to the needs of programmers if the program
is accompanied by further redundant documentation. This
may include regression test suites, API protocol usage, and
code contracts. To this should be added the largest and
most redundant text of all: the previous version of the same
program. It is the differences between successive versions
of a legacy program already in use which occupy most of
a programmer’s time. Although differential analysis in the
form of equivalence checking has been quite successful for
hardware designs, it has not received as much attention in
the static program analysis community.

This paper briefly summarizes the current state of the art
in differential static analysis for software, and suggests a
number of promising applications. Although regression test
generation has often been thought of as the ultimate goal
of differential analysis, we highlight several other applica-
tions that can be enabled by differential static analysis. This
includes equivalence checking, semantic diffing, differential
contract checking, summary validation, invariant discovery
and better debugging. We speculate that differential static
analysis tools have the potential to be widely deployed on
the developer’s toolbox despite the fundamental stumbling
blocks that limit the adoption of static analysis.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication—assertion checkers, formal methods, programming
by contract

General Terms
Reliability, verification

Keywords
static analysis, differential analysis, equivalence checking, se-
mantic diff, regression testing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

1. INTRODUCTION
Software evolves through the introduction of new features,

performance optimizations, bug fixes and refactoring. For
many large software modules that evolve over several years,
the original developers are long gone. A developer or a tester
for such a large legacy module has to rely on previous ver-
sions of the program and regression tests to understand the
program. After each modification to such a codebase, most
of a developers time is spent today in pondering on the fol-
lowing questions:

• Does the change add the desired functionality (in the
case of a feature addition)?

• Does the change (not) add any undesirable behavior?

• Do the regression tests cover the interesting additional
behaviors?

• What particular change was the cause of a regression
failure?

Writing and running regression tests (tests that reveal an
observable difference across a source change) is possibly the
only option today to answer these questions, but it has sev-
eral drawbacks.

1. It requires integration of the module into the overall
system which can be executed — this can be fairly
time consuming when the overall system is an operat-
ing system such as Windows or Linux.

2. The oracles for regression testing are the few runtime
assertions (e.g. null dereferences, exceptions) in the
code — this may not serve as a good indicator for
detecting all desirable or undesirable behaviors.

3. Finally, the coverage is limited to the scenarios cap-
tured in the regression tests — in most cases they only
cover a small fraction of behaviors of the program.

Static analysis involves analyzing the source code of a
module at compile time to find or ensure the lack of a certain
class of defects. The attractiveness of static analysis comes
from two main factors:

• Controllability: it allows identifying defects without
having to perform system integration and running sys-
tem wide tests,

• Coverage: it can often provide a high coverage for the
lack of a certain kind of defect at runtime.

201

These tools range from simple checkers for certain pro-
gramming errors (e.g. certain naming convention for iden-
tifiers) to highly sophisticated verifiers that can ensure a
specification.

In spite of the great progress made by static analysis, the
adoption of static analysis based tools in the development
life-cycle has been limited. An average developer only uses
the syntax-directed, flow-insensitive type-checkers, or check-
ers for specific runtime errors (buffer overruns). This can be
attributed to several reasons including but not limited to (a)
need for property specifications, (b) intermediate contracts
required to prove the assertions, (c) modeling environment,
and (d) fundamental imprecision in static analyzers for rea-
soning about complex invariants. These factors result in a
lot of false alarms from the use of a static analyzer which
consumes valuable developer’s time.

We believe static analysis aimed at exploiting the differen-
tial behavior of two versions of a program (broadly termed
as differential static analysis) enjoys the following character-
istics:

1. it is a more restricted problem than checking arbitrary
contracts statically on a program,

2. if the complexity of an analysis depends on the mag-
nitude of change, it can be applied cost-effectively to
large examples without sacrificing precision [10, 4],

3. as we demonstrate in the next section, there are promis-
ing applications that can improve the productivity of
a developer or tester, and

4. there are important challenges that need to be solved
that make it an interesting research problem.

2. APPLICATIONS AND CHALLENGES
In this section, we highlight various applications that can

be enabled by static differential reasoning. Some of these
applications have received attention already, others are more
speculative. Although regression test generation can be seen
as the ultimate goal, we show that there are intermediate
goals that can provide value. For each of the applications,
we mention some existing works and envision the challenges
that remain.

2.1 Equivalence checking
Equivalence checking for combinational circuit implemen-

tations has been one of the widely adopted tools in hardware
design industry, and many commercial tools exist today (e.g.
Formality [2]). Just as the advances in Boolean Satisfia-
bility (SAT) and (Ordered) Binary Decision Diagrams [1]
accounted for the growth of these equivalence checkers in
hardware, we envision recent advances in Satisfiability Mod-
ulo Theories (SMT) [13] and better formulation of efficient
program logics [9] to provide a solid basis in the context of
software. Unlike equivalence checking of Boolean circuits,
checking equivalence for software will need to account for
dynamic memory allocation, loops, recursion and other rich
constructs present in modern programming languages.

In regression verification [4], the (partial) equivalence check-
ing problem of two closely related versions of a program is
performed by checking (partial) equivalence of two versions
of the individual procedures modularly using SMT solvers.

They use uninterpreted functions as abstractions to sum-
marize procedures in the two versions that are partially
equivalent. This leads to efficient checking when the two
versions are similar. This can be useful when the changes
involve refactoring or performance optimizations, to ensure
that there are no observable behavior changes.

The approach above is mostly restricted to scalar pro-
grams; the presence of heap with recursive datatypes can
make checking equivalence challenging. Similarly, more global
transformations such as the example below may require more
refined abstractions than uninterpreted functions.

void F(...){

....

i = n;

while (i > 0)

a[--i] = i;

}

void F’(...){

....

i = 0;

while (i < n)

a[i] = i++;

}

2.2 Semantic diff
Most software changes involving a bug fix, feature addi-

tion, actually modify the behavior of a program. In the
case when the set of behaviors actually change, a tool that
displays the effect of a change can be extremely valuable.
Tools such as Windiff merely provide syntactic differences
between two versions of a program. However, these tools do
not provide any insight about semantic changes caused by
these syntactic changes.

Jackson and Ladd [6] proposed using the “dependency”
between the input and output variables of a procedure as
the semantic notion of change. A change in the dependency
would indicate that there is a change in behavior; however,
it will be hard to ensure the lack of change. Recently, Per-
son et al. [11] have proposed differential symbolic execution
to summarize the effect of program paths in the two versions
and comparing the symbolic summaries for differences using
a theorem prover. Symbolic Diff [7] uses differential inlin-
ing to inline the differential paths to propagate the changes
interprocedurally; it uses SMT solvers lazily to enumerate
intraprocedural paths that may differ. Figure 1 shows the
output of the tool, where intraprocedural paths are shown
to highlight behavioral differences between two versions of a
program. Such an utility could provide valuable feedback to
the developer at the time of source checkin into a repository.

In spite of the progress, several challenges need to be ad-
dressed. Some of them are:

• propagate changes interprocedurally to the public APIs
of a module,

• succinctly represent the changes and the conditions un-
der which the module does not have any behavioral
changes,

• localizing the changes in the presence of deep heap
updates, and

• allowing the user to specify a vocabulary that limits
the space of expected changes [7]. This could be seen
as a generalization of the work to identify structural
changes in object-oriented programs [8].

2.3 Differential contract checking
Contract checking involves checking various assertions in

a program. The contracts are expressed as preconditions,

202

Figure 1: Output of the symbolic diff tool [7]. The highlighted statements indicate a path in the two versions
of a program, where the procedure has different side effects.

postconditions, loop invariants for procedures and object
invariants. Dynamic contract checking helps add additional
runtime assertions to check, which can provide more observ-
ability at runtime. However, checking user-defined contracts
statically is not cost-effective beyond a specific class of prop-
erties (buffer overruns, locking protocols). Although great
progress has been in mechanizing the proofs of contracts on
large modules, proving these contracts can have very high
overhead. The overhead could be in terms of writing inter-
mediate contracts, or worse still writing proofs scripts within
expressive provers.

Let us define the problem of differential contract checking
as follows:

Given two versions P and P ′ of a program with
a set of contracts, is there an input such that a
contract C evaluates differently in the two ver-
sions?

The motivation of the problem lies in the following belief:
although most program changes will affect the behavior of a
program, the changes should at least not affect the contracts.
We believe that this problem can be handled precisely in
spite of imprecision in the underlying static analysis. Al-
though the analysis may be imprecise for a given input, it

may still be able to say whether the contract evaluates dif-
ferently for this input for the two versions.

void F(int x){

A *r = G(x, &flag);

if (*flag)

r->f = 5;

if (r)

r->h = 10;

}

void F’(...){

A *r = G(x, &flag);

if (*flag)

r->f = 5;

//if (r)

r->h = 10;

}

For example, the two version of F (F and F’) derefer-
ence the fields f and h. Proving the absence of all null-
dereferences in each version require capturing the postcon-
dition of the procedure G; the absence of which may lead
to false alarms. However, one can guarantee that the deref-
erence of r->f is safe in F’ if and only if it was safe in F

as the procedure G has the same effect on both versions. A
differential contract checker will only report that the deref-
erence of r->h is suspicious in the later version. We believe
that this will provide more confidence than pure dynamic
contract checking for richer contracts, with low false alarms.

2.4 Specification documentation
Internal specifications of modules can serve as valuable

203

documentation for codebases undergoing frequent changes in
the hand of multiple developers. However, there is no recipe
for discovering specifications, and the ones that are impor-
tant to document. For example, certain invariants may be
needed as intermediate assertions to prove a given specifica-
tion. This requires the presence of enough specifications for
the code base, which is unreasonable to expect.

We conjecture that the specifications required to prove
equivalence of procedures modularly are an important source
of internal invariants that should at least be documented.
This is because these invariants are not property specific
and justify the code changes.

In the following example:

void F(...){

...

G(..);

H(..);

}

void F’(...){

...

H’(..);

G’(..);

}

The code change inverts the order of calls to procedures G

and H. If the developer does not expect the code to change,
he/she should document the fact that the procedure G and
H commute. This may be easy to infer if they do not depend
or modify the same global, but may be difficult to infer in
the presence of deep heap updates inside the procedures.

2.5 Debugging
One of the harsh realities of software development today

is that programmers often spend disproportionately large
amounts of time debugging code, finding the root cause of
failures. While debugging in general is more art than sci-
ence, the debugging process often involves asking questions
such as ”what has changed in this library since the last re-
lease” and ”how does the behavior of the failure inducing
input compare across versions of the program”. Existing de-
bugging tools provide little help in answering such questions.

Several of these questions can be naturally reduced to the
problem of identifying semantic differences between versions
of the software artifact. For example, one approach for find-
ing the root cause of a failure is to systematically roll back
changes until a change the eliminate the failure is found.
Differential analysis can be used to automatically generate
new inputs that are similar to a failing input but do not
induce a failure [12, 5]. Comparing such inputs with the
failing input often provides critical clues to the cause of fail-
ure. Debugging tools can also assist programmers during a
debugging session by using differential analysis to find and
highlight functions exercised by the failing input that exhibit
different behavior since the last version.

In general, a correct version of an application significantly
simplifies the debugging problem significantly by serving as
a baseline with which to compare program behavior against.
Furthermore, tools that employ differential analysis as a de-
bugging aid are likely to be more scalable because they only
need to reason about a small number of code fragments that
have changed and/or a small number of inputs.

2.6 Regression testing
The problem of regression test selection, leveraging dif-

ferential information to prune regression tests that are not
affected by the code change has been widely studied [14].
This is also widely used in industries for testing large mod-
ules with several million test cases. However, the problem

of generating new regression test cases that will cover the
differential behaviors has not being studied extensively; a
recent work in this area [15] tries to leverage the change
propagation to guide dynamic symbolic simulation [3] for
test generation. Although obtaining 100% path coverage is
infeasible for large modules, we can expect to provide or
generate regression tests that cover 100% of the differential
paths for small changes (such as bug fixes). One of the main
challenges here is to provide a metric for coverage that en-
sures that all the differential paths generated by a static tool
have been covered.

3. REFERENCES
[1] R. E. Bryant. Graph-based algorithms for Boolean

function manipulation. IEEE Transactions on
Computers, C-35(8):677–691, August 1986.

[2] Formality. Available at
http://www.synopsys.com/Tools/Verification/ For-
malEquivalence/Pages/Formality.aspx.

[3] P. Godefroid, N. Klarlund, and K. Sen. DART:
Directed automated random testing. In Programming
Language Design and Implementation (PLDI ’05),
pages 213–223. ACM, 2005.

[4] B. Godlin and O. Strichman. Regression verification.
In DAC, pages 466–471, 2009.

[5] K. J. Hoffman, P. Eugster, and S. Jagannathan.
Semantics-aware trace analysis. In PLDI, 2009.

[6] D. Jackson and D. A. Ladd. Semantic diff: A tool for
summarizing the effects of modifications. In ICSM,
pages 243–252, 1994.

[7] M. Kawaguchi, S. K. Lahiri, and H. Rebelo.
Conditional equivalence. Technical Report
MSR-TR-2010-119, Microsoft Research, 2010.

[8] M. Kim and D. Notkin. Discovering and representing
systematic code changes. In ICSE, pages 309–319,
2009.

[9] S. K. Lahiri and S. Qadeer. Back to the future:
revisiting precise program verification using SMT
solvers. In Principles of Programming Languages
(POPL ’08), pages 171–182, 2008.

[10] D. Notkin. Longitudinal program analysis. In PASTE,
page 1. ACM, 2002.

[11] S. Person, M. B. Dwyer, S. G. Elbaum, and C. S.
Pasareanu. Differential symbolic execution. In
SIGSOFT FSE, pages 226–237, 2008.

[12] D. Qi, A. Roychoudhury, Z. Liang, and K. Vaswani.
Darwin: an approach for debugging evolving
programs. In ESEC/SIGSOFT FSE, 2009.

[13] Satisfiability Modulo Theories Library (SMT-LIB).
Available at http://goedel.cs.uiowa.edu/smtlib/.

[14] A. Srivastava and J. Thiagarajan. Effectively
prioritizing tests in development environment. In
ISSTA, pages 97–106, 2002.

[15] K. Taneja, T. Xie, N. Tillmann, J. de Halleux, and
W. Schulte. Guided path exploration for regression
test generation. In ICSE Companion, pages 311–314.
IEEE, 2009.

204

