
Enabling Innovation: A Choice for Software Engineering
Richard N. Taylor

Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3455
+1.949.824.6429

taylor@ics.uci.edu
ABSTRACT

Software Engineering must choose whether it wants its future to

be one in which innovative development techniques, innovative
architectures, innovative interfaces, and such are enabled and
encouraged to emerge from its research community, or if research
will be confined to observation, analysis, formalization,
experimentation, and assessment of the innovations that emerge
from other quarters, notably industrial practice. If the choice is to
enable innovation in the research community, then the “meta-
practices” of the community must change. To wit, the criteria
actually applied to funding requests must be changed and forums

in which innovations can be presented must be created.

Categories and Subject Descriptors

D.2 SOFTWARE ENGINEERING

General Terms

Design, Experimentation, Human Factors

Keywords

Conferences, funding criteria, accountability

1. INTRODUCTION
Many seasoned attendees at conferences such as ICSE and FSE
attend few – if any – of the paper sessions. When asked to
explain, many – this author included – will reply that they find
most papers boring. Indeed, it is easy to find many veterans of

software engineering research lamenting the state of field,
wherein such laments focus either on the narrowness of research
papers, the lack of consequence of the results, or perhaps longing
for the “good ol’ days” of DARPA funding software innovation.

The characterization of papers as “boring” is often understood to
mean that the size of any presented innovation or other
advancement is small relative to prior work, or that the topic of
the study bears only distant relation to perceived problems of the

industry, or perhaps that the experiment conducted – if any – is
unconvincing for being distant from “reality”. Whether “boring”
is a legitimate complaint or not, few would disagree that major
innovations in software technology seldom first appear in today’s
research conferences, or arguably from government funded grants.

A substantial part of the community now sees the interesting
technologies and approaches emerging only from “the practice” –
either from single companies or from open-source communities.
(Arguably this is a change from the past, as the NSF Impact
Project has shown numerous cases of significant prior innovation

emerging from the research community. E.g. see [1].) In my
opinion the net effect is that progress is much slower and the
degree of innovation much less, since “the practice” necessarily
focuses on near-term results.

2. ROOTS OF OUR DILEMMA
In many respects our problem – if indeed one agrees that it is a

problem – is the result of our own success. Faced in the past with
products trying to masquerade as research, “results” based on poor
investigational practices, and other actual or perceived problems,
the community actively sought to raise the bar. Program
committees for conference such as FSE and ICSE are now held to
a high standard: committee members must personally review
submissions, must attend the program committee meeting in
person, and must be prepared to defend their positions.

Correspondingly the quality of papers has become more uniform
and, arguably, much better. “Better” as defined by being clear in
definition, comprehensive in comparison to related work, and
providing evidence of evaluation. Yet the net effect seems to
have been to move all research under the lamppost. Since in order
to be published a paper must have clarity, precision, formality,
and above all, a solid evaluation section, authors have focused
their work on those problems that are amenable to those criteria.

That is, they have (necessarily) focused on problems for which it
is possible to have a tidy, fully defensible evaluation section, nice
formalisms, and a whole package that can be presented in 10
pages, ACM format. We wanted rigor, repeatability, and
precision, and we got it.

Other factors have driven the community into its current position.
For some, the community’s practices are driven by comparison to
the physical sciences. In physics, chemistry, and biology the

scientific method is king: observations are made, theories
formulated, hypotheses expressed, experiments designed and
conducted to verify or deny the hypotheses, and the results
cataloged for posterity.1 The key grounding though is
observation: observation of the physical world, a world of
staggering complexity at all scales, that never ceases to raise new
questions. But software is an artificial world, a world of our own
making, and our science is a science of the artificial, not a science
of observation of externally created reality [4]. Thus to be like

1 For those with intimate familiarity with the actual practices in
these sciences, however, the reality is known to be far different,
and sometimes embarrassing. (See, e.g. [2]) But such
dissonances are not our focus here.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FoSER 2010, November 7-8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11...$10.00.

375

one of the “hard scientists” we have in many cases constructed a
world that is amenable to a similar kind of study. Early
publications in software engineering show that formal verification
of GCD (Greatest Common Divisor) algorithms to be of interest.
One can also note the extensive study of the 8 Queens problem,

the elevator controller, the gas station problem, pipe-and-filter
architectures, and yes, to be appropriately self-critical, of the
KLAX video game [5].

3. (NECESSARILY)
One question is, have we narrowed our investigative focus

necessarily? Here the answer comes in part not from the essence
of software, but rather from the social world in which the research
community operates. Many of us are professional academics:
subject to the rules and norms of the academy. Our personnel
cases are evaluated by our peers in software engineering, but (at
least in my university) also by a powerful campus-wide
committee composed of scientists, humanists, artists, philosophers
– academics of all stripes. We have to “look good” to get our

infrequent raises, and yes, to get tenure.

We also have to “look good” when seeking funding for our
investigations. When a major funding agency, such as the NSF,
has to decide whether to fund a software engineering program or
(say) a chemical engineering program, part of the argument will
be based upon the relative or perceived “quality of work in the
fields,” the rigor of the techniques, the solidness of the results, the
predictability of the outcome. Naturally that pushes software

engineering to be formal, rigorous, and so on.

“Looking good” also has implications for productivity, which
usually translates to quantity of publications. We are motivated to
produce more papers, rather than (e.g.) deeper results. This
tension is supposed to be attenuated by external peer review of
personnel cases, but the visible presence of many publications in
one dossier, as opposed to fewer but possibly deeper pubs in
another case, is hard to ignore – especially when viewed by
someone outside the field.

But do only such outside-the-field comparisons necessarily
compel us to narrowness and “safe studies”? Even within
software engineering comparisons are made. Papers addressing
topics in analysis and testing have, in my opinion, an advantage
over those addressing, say, human factors in programming
practice. The advantage derives from the (relative) ease of
formalization of analysis and testing questions and (on many
occasions) the ability to perform quickly extensive automated

assessments of a technique, where such assessments are not
subject to the variances of individual human behavior.

I do not mean to imply that such pressures are ill-intentioned, or
parochial in their fundamental nature. I believe that much of what
we see in practice is due to the entirely appropriate need for
quality, accountability, and integrity.

4. QUALITY, ACCOUNTABILITY AND

INTEGRITY
My view of why software engineering has come to be so baked-in
to its current conservative (“boring”) position is that it is in

reaction to a period many years past when several publications
and postures were of arguably very low quality, when claims
could be made for which there was no ultimate accountability, and

indeed cases when the very integrity of a presentation was in
question. The need for excellence is undeniable. The quandary
then, is how to encourage risk, innovation, excitement, and new
technology development within the research community, while
still maintaining high standards. Even more, how to encourage

such work that targets large-scale problems, creates new industrial
markets, builds intellectual property, and yes, creates new positive
economic forces. I think we have seen some good mechanisms in
the past, and believe we can draw from them to enable genuine
innovation while maintaining high standards.

5. SOME MODEST SUGGESTIONS
I do not claim novelty for my suggestions. Some of them echo
recommendations from earlier studies, such as the PITAC report

[3]. Others echo comments often heard in the ICSE and FSE
hallways.

1. New conference publication forums are needed. Much as I
would prefer to “fix” ICSE or FSE, I do not see any realistic
potential for the required radical transformation of the
process. The current ICSE/FSE criteria and processes do
serve a part of the community and the industry well, and
that should continue. Hence I believe SIGSOFT should
step up to the challenge of creating a new forum
(occasionally mooted as “HotSE”) to be the venue for
highly innovative (and risky) design-based contributions.

The acceptance criteria should be fundamentally different
from ICSE/FSE, along the lines of what I have implied
above2.

2. As a community we should place renewed emphasis on
journal publications rather than conferences. Journals can
and should focus on depth, and the interaction between
author and reviewer/editor can enable solid, deep, and
influential work to appear, with the requisite number of

pages. N.B. that reviewers will still have to be instructed on
appropriate evaluation criteria.

3. Funding officers should be enabled to exercise greater
personal judgment and discretion in making funding
decisions. The extensive external constraints that some
funding officers work under possibly will preclude this
from happening, but it has worked exceedingly well in the
(remote) past at DARPA. Concomitantly, reviewers of

proposals (and papers) should be encouraged to apply
criteria prioritizing novelty, impact, innovation, and
significance over slavish adherence to formality or safe but
largely meaningless experiments.

4. The new freedom implied by item 3 to fund more
interesting, but riskier projects should be accompanied by a
new focus on public accountability. Public demonstrations
of new technologies, head-to-head competitions, “bake-

offs” and prize-based competitions should be used as a
matter of course, not as rare exceptions. Funding agencies
should be able to exercise discretion in granting funds, but
also in pulling them back.

2 One model for such a conference is SIGPLAN’s Onward!
meeting; communities outside of software engineering and
computer science provide some additional models, such as
design fairs. Identifying an appropriate model for software
engineering will take some thought, but we should not delay.

376

Above all, innovation should be moved to the forefront of software

engineering research’s priorities. Recognition and professional
reward should follow for innovative contributions.

6. THE DISNEYLAND PARADE
Part of the meta-issue of course, is what should software
engineering research be about? Should it be focused primarily on
the innovation of new technology? Or should it be focused on the

tidying up of the innovations of others, whereby I mean the
formalization, evaluation, and critical appraisal of a technology
developed by others. If the latter is all software engineering
research is to focus on, then it starts to appear like the bloke at the
end of the Disneyland parade, dutifully cleaning up after all the
exciting stuff has passed by.

My unfortunate penchant for hyperbole has clearly led me to paint
a stark picture, one that is admittedly somewhat exaggerated. But
there is a problem, a deep problem, that is driving the fun (and in
my opinion, the value and potential) out of much of software
engineering research. We can do something about it, and we

should.

7. REFERENCES
[1] Estublier, J., Leblang, D.B., Clemm, G., Conradi, R., van der

Hoek, A., Tichy, W. and Wiborg-Weber, D. Impact of the
Research Community on the Field of Software Configuration
Management. ACM Transactions on Software Engineering
Methodology (TOSEM), 14 (4). 383-430.

[2] Ioannidis, J.P.A. Why Most Published Research Findings
Are False. PLoS Med, 2 (8). e124.

[3] President's Information Technology Advisory Committee.
Information Technology Research: Investing in Our Future,
Arlington, VA, 1999.

[4] Simon, H.A. The Sciences of the Artificial. The MIT Press,
1996.

[5] Taylor, R.N., Medvidovic, N., Anderson, K.M., E. James
Whitehead, J., Robbins, J.E., Nies, K.A., Oreizy, P. and
Dubrow, D.L. A Component- and Message-Based
Architectural Style for GUI Software. IEEE Transactions on
Software Engineering, 22 (6). 390-406.

377

