
Engineering Self-Coordinating Software Intensive Systems

Wilhelm Schäfer1,2, Mauro Birattari4, Johannes Blömer2, Marco Dorigo2,4, Gregor Engels2,
Rehan O’Grady4, Marco Platzner2, Franz Rammig1,2, Wolfgang Reif5, and Ansgar Trächtler1,3

wilhelm@upb.de
1 Heinz Nixdorf Institute
University of Paderborn

Fürstenallee 11, Pohlweg 98,
and Warburger Str. 100
Paderborn, Germany

2 Department of Computer
Science

University of Paderborn
Warburger Str. 100

Paderborn, Germany

3 Department of Control
Engineering and Mechatronics

University of Paderborn
Pohlweg 98

Paderborn, Germany

4 IRIDIA, CoDE
Université Libre de Bruxelles

Ave. F. Roosevelt 50
CP 194/6, 1050 Brussels,

Belgium

5 Department of Software
Engineering and Programming

Languages
University of Augsburg

Universitätsstr. 6a
Augsburg, Germany

Categories and Subject Descriptors
D.2.2 [Software Engineering]: General

General Terms
Algorithms, Design, Languages, Security, Theory, Verification

Keywords
New Engineering Methodology, Systems Engineering, Mecha-
tronic Systems, RailCab

In a globalized world, technical systems are becoming ubiqui-
tous, and are increasingly interacting directly with the physical
world. The design space of such systems also, therefore, includes
the basic laws of physics. Examples of such systems are world-
wide production systems, public transport systems and the Internet
as a commercial platform (including shipping the real products of
course).

In the future, these systems will become so complex and dis-
tributed that current development techniques will not suffice to pro-
duce safe and secure systems. This is due to a number of charac-
teristics which are listed in the following: [18]:

• Volatility: complex volatile networks in which components
cooperate as well as possibly compete,

• Decentralization: components act autonomously because no
central control is feasible and a single point of failure is also
not tolerable anymore,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

• Scoped knowledge: an unobservable global system state and
thus components with only local knowledge, optimization of
own benefits being the driving force of a component’s coop-
eration,

• Difficulty of guaranteeing behaviour: functional correctness,
security and safety become difficult to guarantee when re-
sources are limited and parts can fail.

In order to address these characteristics and to build systems
which still operate safely an securely, components must be able
to learn from environmental changes as a universal ability. Fur-
ther, a tight integration of continuous and discrete control is needed,
i.e. (software) control is becoming a combination of classical feed-
back controllers defined by differential equations to address physi-
cal constraints and state based transitions defined e.g. by statecharts
to address the need to compute strategic decisions and to take into
account environmental changes. These systems have to exhibit self-
X properties like self healing, self-configuring, self-adapting, and
self-optimizing leading to robustness against failures, disturbances
and changing requirements. (Sometimes, a subset of such systems
is also called emergent system which in our view only means that
a large number of components follow relatively simple local rules
and interaction patterns. As an ensemble, however, they exhibit
complex system behaviour with ensemble capabilities that go be-
yond the single componentsŠ capabilities.) In any case it means
deferring decisions from design-time to run-time. We refer to such
systems as self-coordinating systems, by which we mean technical
systems that self-organise to achieve specific goals.

As examples for such software intensive systems consider that
in the future, logistics will be responsible for supporting the as-
sembling of goods tailored to customers’ individual specifications.
Driver assistance systems will need to enable cars to cooperate
closely with each other to ensure optimal safety and comfort for
their occupants. And software will need to be constructed at run-
time from millions of pre-fabricated components in a global soft-
ware market and deployed dynamically on demand. Logistics must
cope with volatile networks of autonomously acting carriers and
suppliers, competing as well as cooperating with each other. Driver

321

assistance systems form heterogeneous networks of cars, where
each car aquires only local knowledge. A global software mar-
ket forms a huge network of existing components whose assembly
into new software requires a high degree of adaptation. Software
component requests will need to be bound to corresponding com-
ponents providing the required functionality and then allocated to
executing devices. In each of these settings, the global system state
is neither observable nor would a knowledge of it (due to its com-
plexity) be of any help. New properties emerge while the network’s
components adapt to and learn from other components. Still, the
requirements on safety and security are very strong and need to be
certified in the end.

Currently, the engineering of self-coordinating systems fol-
lows mainly classical approaches for centrally-coordinated sys-
tems, adapting and extending them to meet the new requirements
of self-coordination. A radically new approach would span a num-
ber of disciplines, all of which need to align their methods to the
paradigm of self-coordination, and only in their combination can
we manage the challenges that self-coordination brings. The in-
tegration of mechanical engineering, particularly control engineer-
ing, with electrical engineering and software engineering is needed
to combine the physical environmental constraints of a system with
its state-based control and the (software) system architecture. In-
tegration with knowledge about business-oriented applications is
needed, because in a world wide global market strategic decisions
must be taken, and the corresponding logic has to be embedded in
the controlling software as well (c.f. Figure 1 [9]).

Figure 1: Software-intensive systems w.r.t classical disciplines

The challenges which the engineering of self coordinating sys-
tems faces, are characterized by a number of research questions
like:

• How can optimal strategies be determined in the presence of
partial or even unreliable information?

• How can heterogeneous components decide which informa-
tion is relevant and which need not be considered?

• What algorithms might help us in reaching stable, robust, and
desirable behavior in a distributed network?

• How can components find out about their coordination pos-
sibilities with cooperating or even competing components?

• What design and operation principles do we need for the un-
derlying technical infrastructure and how can we maintain
these principles when resources are restricted and parts can
fail?

• How can we manage the secure exchange of information
without a central public-key infrastructure and only limited
resources?

• When do we need cross-border migrations between hardware
and software?

• What modeling formalisms have to be supplied in order to
enable the construction of adaptable systems?

• What analysis techniques are required to make software re-
flect on both its own and its environment’s behaviour and
consequently change itself?

• What verification techniques can ensure the correctness of
self-coordinating systems despite their inherent potential
volatility?

• How can a tight integration between classical feedback con-
trollers and the state-based discrete control be achieved?

Today’s software engineering research by and large is not re-
ally focussing on answering these questions but is rather cen-
tered around much smaller systems than the ones mentioned above
which, in addition, often consist of software "only" (e.g. informa-
tion systems). It is also usually done by small, non-interdisciplinary
research teams. Of course, that does not mean that we no longer
need research on testing and analysis, on program understanding,
or on formal modelling and verification approaches, to list only
a few examples. However, this research must be combined with
e.g. the development and layout of complex networks and their un-
derlying infrastructure as well as research on corresponding data
structures and algorithms and control theory (e.g. [6]). Even in that
paper, integration with control theory which means integration with
the laws of physics, is not really addressed.

In contrast, to address some of the issues, a systems engineering
community1 has been formed. However, looking at their publica-
tions and major conference(s), software engineering in turn as well
as control theory only play a very minor role in this effort2.

There are approaches in the service-oriented architecture (SOA)
community and self-adaptive community which take highly dy-
namic and adaptive applications into account (e.g. [16, 5, 7]). In-
terdisciplinary engineering with for example control engineers is
not relevant for this kind of applications or is considered only on a
high abstract level [13].

As indicated, the integration of a number of research strands
from various fields is needed to master the complexity of self-
coordinating systems. As examples consider the combination of
swarm intelligence and game theory to address the contradiction
between selfishness of agents [1, 2] on the one hand and their neces-
sary cooperation on the other hand with work on safety and security
to address the usual critical mission of these systems for the whole
society [20]. The latter part becomes particularly complicated, be-
cause current usable techniques usually assume a finite state space
and if not, approaches usually do not scale [19]. Furthermore, con-
trol theory and its current sophisticated simulation environments
have to be included and extended to get an understanding of a sys-
tem’s behaviour, even if the inherent complexity of such systems
mean that a full understanding can never be achieved before the
system goes into operation [4]. Current simulation techniques are
not sufficient, because they basically assume total knowledge of the

1INCOSE: The International Council on Systems Engineering
(http://www.incose.org/)
2The main focus is on informal engineering and man-
agement aspects (e.g. http://www.incose.org/symp2009 or
http://www.incose.org/practice/techactivities/wg/transport/).

322

system environment and the system behaviour itself, i.e. all possi-
ble states. Smart integration of simulation and formal system veri-
fication taking into account uncertainty about the environment and
the system itself as well as adaptivity of the behaviour at runtime is
another major research issue.

A highly interdisciplinary team of researchers at the University
of Paderborn works already on some of the issues above. The team
includes members from the departments of informatics, electrical
engineering, mechanical engineering and economy3.

The underlying paradigm of a number of common research
projects is to view modern machines as built by mechanical en-
gineers as agents and consider an (advanced) mechanical product
as a system of cooperating agents. This paradigm works for as di-
verse applications as modern public and private transport systems,
production systems but also the so-called smart grids which are
supposed to distribute and use the energy produced by a lot various
resources (coal, nuclear, solar, wind etc.), much more effectively
than today.

Most notably and serving as a reference example, a team in
Paderborn works on a modern public transport system called Rail-
Cab which exhibits many of the features of a self coordinating me-
chanical system. This system has reached a prototype status which
includes a real physically built test track on the campus4.

The vision of the RailCab project is to provide the comfort of in-
dividual traffic concerning scheduling and on-demand availability
of transportation as well as individually equipped cars on the one
hand and the cost and resource effectiveness of public transport on
the other hand (e.g. [14]). The modular railway system combines
sophisticated undercarriages with the advantages of new actuation
techniques to increase passenger comfort while still enabling high
speed transportation and (re)using the existing railway tracks. One
important feature is the reduction of energy consumption due to air
resistance by coordinating the autonomously operating shuttles in
such a way that they build convoys whenever possible. Such con-
voys are built on-demand and shuttles travel close to each other
(less than 1m) such that a high reduction of energy consumption is
achieved. Consequently, shuttles as part of a network of possibly
more than 100 000 shuttles need to decide when to build or not to
build convoys. In addition, the construction of a convoy is a very
critical situation which requires tight interaction between control
engineering (developing the speed control units) and software en-
gineering (developing the communication protocols) as well as the
underlying communication infrastructure (reliable transmission of
messages on a wireless network) [10, 8, 11, 12].

Tool support for modeling and checking such system specifica-
tions has been implemented as part of the FUJABA real-time tool
suite5 [17]. In order to support the specification of controllers by
block diagrams and differential equations a commercially available
tool, namely CAMeL-View6, has been integrated into the FUJABA
tool suite. Both tools offer code generators which target various
platforms [3].

Fig. 2 shows a screenshot of the simulation environment of the
tool. It is an extension of the CAMeL-View simulation. The three
dimensional view in the lower part simulates a convoy of two shut-
tles. State information can now be displayed in addition to the
controller status information of all shuttles (lower right part). The
graphs in the upper part of the screen display “traditional” con-

3E.g. the Collaborative Research Centre 614 "Self-optimizing
concepts and structures in mechanical engineering" (CRC 614 -
http://www.sfb614.de/en/sfb614/) or [15]
4RailCab project (http://nbp-www.upb.de/index.php?id=2&L=1)
5http://www.fujaba.de/projects/real-time.html
6http://www.ixtronics.com

troller information. In detail, the upper right part displays the posi-
tion of the shuttles, the upper left hand the velocity of the first and
second shuttle, and in the lower left the reference values for speed
are shown.

The authors are engaged in ongoing efforts to advance this
rapidly growing field. Paderborn’s existing expertise will form the
backbone of the new research effort. The provincial government
and the town of Paderborn have decided to place a new dedicated
Science and Technology park around the “Fürstenallee Campus” of
the university called “Zukunftsmeile Fürstenallee”7. With support
from the European Union and some global players like Wincor Nix-
dorf, Siemens and Miele joint research labs between industry and
the university are being funded and will be located here. Research
areas include software engineering, mechatronics and visualisation
and simulation. The proximity should establish a fruitful exchange
of ideas and approaches across the different disciplines.

1. REFERENCES
[1] Advances in Artificial Life, Proceedings of the 9th European

Conference on Artificial Live, ECAL 2007, Lisbon, Portugal,
volume 4648 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2007.

[2] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm
intelligence: from natural to artificial systems. Oxford
University Press, Inc., New York, NY, USA, 1999.

[3] S. Burmester, H. Giese, S. Henkler, M. Hirsch, M. Tichy,
A. Gambuzza, E. Müch, and H. Vöcking. Tool support for
developing advanced mechatronic systems: Integrating the
fujaba real-time tool suite with camel-view. In Proc. of the
29th International Conference on Software Engineering
(ICSE), Minneapolis, Minnesota, USA, pages 801–804. IEEE
Computer Society Press, May 2007.

[4] S. Burmester, H. Giese, S. Henkler, M. Hirsch, M. Tichy,
A. Gambuzza, E. Münch, and H. Vöcking. Tool support for
developing advanced mechatronic systems: Integrating the
fujaba real-time tool suite with camel-view. In Proc. of the
29th International Conference on Software Engineering
(ICSE), Minneapolis, Minnesota, USA, pages 801–804. IEEE
Computer Society Press, May 2007.

[5] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and
J. Magee, editors. Software Engineering for Self-Adaptive
Systems [outcome of a Dagstuhl Seminar], volume 5525 of
Lecture Notes in Computer Science. Springer, 2009.

[6] P. Feiler, R. P. Gabriel, J. Goodenough, R. Linger,
T. Longstaff, R. Kazman, M. Klein, L. Northrop,
D. Schmidt, K. Sullivan, and K. Wallnau. Ultra-Large-Scale
Systems: The Software Challenge of the Future. Software
Engineering Institute, Carnegie Mellon, June 2006.

[7] I. Georgiadis, J. Magee, and J. Kramer. Self-organising
software architectures for distributed systems. In WOSS ’02:
Proceedings of the first workshop on Self-healing systems,
pages 33–38, New York, NY, USA, 2002. ACM.

[8] H. Giese, S. Burmester, W. Schäfer, and O. Oberschelp.
Modular Design and Verification of Component-Based
Mechatronic Systems with Online-Reconfiguration. In
Proceedings of 12th ACM SIGSOFT Foundations of Software
Engineering 2004 (FSE 2004), Newport Beach, USA, pages
179–188. ACM Press, November 2004.

[9] H. Giese, S. Henkler, M. Hirsch, V. Roubin, and M. Tichy.
Modeling techniques for software-intensive systems. In

7http://www.zukunftsmeile-fuerstenallee.de

323

NoConvoy

Decision

Convoy

NoConvoy

Decision

Convoy

Figure 2: Simulation Environment

Designing Software-Intensive Systems: Methods and
Principles. Langston University, OK, 2008.

[10] H. Giese, M. Tichy, S. Burmester, W. Schäfer, and S. Flake.
Towards the Compositional Verification of Real-Time UML
Designs. In Proceedings of the 9th European software
engineering conference held jointly with 11th ACM
SIGSOFT international symposium on Foundations of
software engineering (ESEC/FSE-11), pages 38–47. ACM
Press, September 2003.

[11] C. Henke, M. Tichy, T. Schneider, J. Böcker, and W. Schäfer.
Organization and control of autonomous railway convoys. In
Proceedings of the 9th International Symposium on
Advanced Vehicle Control, Kobe, Japan, 2008.

[12] S. Henkler, M. Hirsch, C. Priesterjahn, and W. Schäfer.
Modeling and verifying dynamic communication structures
based on graph transformations. In G. Engels, M. Luckey,
and W. Schäfer, editors, Software Engineering 2010 -
Fachtagung des GI-Fachbereichs Softwaretechnik,
22.-26.2.2010 in Paderborn, volume 159 of LNI, pages
153–164. GI, 2010.

[13] J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. In L. C. Briand and A. L. Wolf,
editors, Workshop on the Future of Software Engineering,
FOSE 2007, May 23-25, 2007, Minneapolis, MN, USA,
pages 259–268, 2007.

[14] E. Münch, P. Adelt, M. Krüger, B. Kleinjohann, and
A. Trächtler. Hybrid planning and hierarchical optimization
of mechatronic systems. In Proceedings of the International

Conference on Control, Automation and Systems (ICCAS),
Seoul, Korea, 14 - 17 Oct. 2008.

[15] F. Nafz, F. Ortmeier, H. Seebach, J.-P. Steghöfer, and
W. Reif. A universal self-organization mechanism for
role-based organic computing systems. In ATC ’09:
Proceedings of the 6th International Conference on
Autonomic and Trusted Computing, pages 17–31, Berlin,
Heidelberg, 2009. Springer-Verlag.

[16] E. D. Nitto, C. Ghezzi, A. Metzger, M. P. Papazoglou, and
K. Pohl. A journey to highly dynamic, self-adaptive
service-based applications. Autom. Softw. Eng.,
15(3-4):313–341, 2008.

[17] C. Priesterjahn, M. Tichy, S. Henkler, M. Hirsch, and
W. Schäfer. Fujaba4eclipse Real-Time Tool Suite. In
Model-Based Engineering of Embedded Real-Time Systems
(MBEERTS), LNCS, pages 1–7. Springer, 2009. to appear.

[18] F. J. Rammig. Towards self-coordinating ubiquitous
computing environments. In Embedded and Ubiquitous
Computing, volume 4096 of Lecture Notes in Computer
Science, pages 2–13. Springer Berlin / Heidelberg, 2006.

[19] W. Schäfer and H. Wehrheim. The challenges of building
advanced mechatronic systems. In Workshop on the Future
of Software Engineering, FOSE 2007, May 23-25, 2007,
Minneapolis, MN, USA, pages 72–84. IEEE Computer
Society, 2007.

[20] J. Sifakis. Safety, security and quality. ACM Comput. Surv.,
page 124, 1996.

324

