
Evidence-based Software Production
James Kirby, Jr.

Naval Research Laboratory
Code 5542

Washington, DC 20375
1-202-767-3107

james.kirby@nrl.navy.mil

David M. Weiss
Dept. of Computer Science

Iowa State University
 Ames, IA 50011
1-515-294-1580

weiss@iastate.edu

Robyn R. Lutz
Dept. of Computer Science

Iowa State University & JPL/Caltech
Ames, IA 50011
1-515-294-3654

rlutz@iastate.edu

ABSTRACT
“… [S]oftware remains NIT’s [Networking and Information
Technology] greatest weakness. Although reliable and robust
software is central to activities throughout society, much software
is brittle, full of bugs and flaws. Software development remains a
labor-intensive process in which delays and cost overruns are
common, and responding to installed software’s errors, anomalies,
vulnerabilities, and lack of interoperability is costly to
organizations throughout the U.S. economy.” “… [T]he science of
software development must be a focus of Federal NIT R&D. As
software’s complexity continues to rise, today’s design,
development, and management problems will become intractable
unless fundamental breakthroughs are made ...”[2]

Current understanding of software development—largely based
on anecdotes—is inadequate for this “science of software
development.” Achieving the deeper understanding needed to
transform software production requires collecting and using
evidence on a large scale. This paper proposes some steps toward
that outcome.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—process metrics,
product metrics.

General Terms
Management, Measurement, Documentation, Design, Reliability,
Experimentation, Verification.

Keywords
Evidence-based, software production, data-driven improvement.

1. INTRODUCTION
The purpose of this paper is to make the case for evidence-based
understanding and improvement of software production. Such
evidence should be based on standardized, widely collected data,
and not simply on unrepeated and unrepeatable experiments and
anecdotes. Evidence-based approaches have enabled rapid,

startling advances in manufacturing, agriculture, medical
technology, and other fields. For example, Gawande describes
how, in 1900, over 40% of a family’s income in the U.S. went to
food. Farming was labor-intensive and engaged almost half the
workforce. Productivity was low, and farmers viewed any change
in their practices as too risky. The invisible hand of market
competition was not improving the situation. A turning point
came when the U.S. Department of Agriculture initiated a pilot
project with a single farmer in 1903. Unlike other farmers in the
area, he made a profit in what was the worst year for cotton in a
quarter century. Experiments, pilot projects and demonstrations
followed. Crop forecasting became possible; new hybrids and
mechanization techniques moved from research into practice; and
radio broadcasts on 163 stations supplied timely information so
that farmers themselves could make rational planting decisions.
Gawande describes the resulting transformation: “It shaped a
feedback loop of experiment and learning and encouragement for
farmers across the country. The results were beyond what anyone
could have imagined. Productivity went way up. . . . Prices fell by
half. By 1930, food absorbed just twenty-four per cent of family
spending and twenty per cent of the workforce” [10].
Transformation of software production on this scale, at similar
speed is likewise possible, but will require a similar investment in
experiments and pilot projects, and in collection and analysis of
detailed data. It will require better mechanisms to supply industry
with information about what works and what doesn’t. The
transformation of agriculture was not a result of relying on just a
few breakthrough ideas, but rather a result of trying many
different approaches and selecting those that evidence showed
were useful. Achieving improved understanding of software
production similarly needs evidence-based investigation of
hypotheses. We can then provide timely feedback to software
producers. Anecdotes and case studies, while useful, serve as
starting points to stimulate the collection of evidence.
We use software production, instead of software development, to
emphasize that we refer not only to software creation, whether
starting fresh or reusing existing software, but also to software
sustainment as the system evolves throughout its life. We
understand software production to be (usually) the work of large,
multi-disciplinary, geographically distributed, international teams
of individuals and organizations creating and evolving a variety of
artifacts, sometimes over decades. Artifacts may be formal with
well-defined semantics such as models, specifications, and code;
may be semi-formal with prescribed format and content such as
requirements and design documents; or may be informal such as
instant messages, wikis and email.

Copyright 2010 Association for Computing Machinery. ACM acknowledges
that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government
retains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11...$10.00.

191

We posit that current knowledge of software production is largely
anecdotal, and that transforming software production requires
developing a deeper understanding of it that must be based on
evidence, both quantitative and qualitative. This paper proposes a
strategy for gathering necessary evidence, and identifies some
questions on which to focus to turn evidence into understanding
that drives improvement. We are not the first to suggest that
evidence is needed, or which methods to use to collect it, but we
have not seen elsewhere a call to develop a wide-scale strategy
for collecting and using evidence to put software production on a
firmer basis [1], [2]. Nor have we elsewhere seen a call to collect
such detailed data about software production.
Acquiring such knowledge will help producers make rational
decisions that in turn can reduce software failures and make the
systems on which we depend more reliable. SIGSOFT’s Software
Engineering Notes Risks column keeps us informed, entertained,
and sometimes aghast at the variety of failures caused by software
[4]. Kitchenham et al. discuss how decision makers could use
“current best evidence from research” to improve software
production [13]. What we don’t have is evidence of systemic
software production problems that lead to failures, of the
distribution of such problems across software systems, and of the
effects of various solutions that have been tried. The
consequences of failing to collect and use evidence are, at best, a
continuing sequence of flawed programs that deliver much less
than was promised for much more time and effort than was
expected and, at worst, programs that fail in operation with
catastrophic effect.
With the ever-increasing demand for larger, more complex
software-intensive systems and the current potential for
improvement in our ability to build them, shaping a “feedback
loop of experiment and learning and encouragement” [10] can
propel our ability to produce software, much as it did agricultural
productivity in a previous century.

2. ACQUIRING KNOWLEDGE
Developing an understanding of software production entails
examining the decisions and assumptions that are reflected or
recorded in artifacts. This includes examining the individuals,
organizations, disciplines, and automated mechanisms that make
the decisions and create and evolve the artifacts; examining the
rationale, assumptions, and mental models and representations
underlying the decisions; and examining the representations of
decisions, rationale, and assumptions in various artifacts. We
must observe how decisions, assumptions, and other forms of
knowledge flow among the artifacts and artifact versions, as well
as among individuals, disciplines, and organizations. We must
study how decisions and assumptions are forgotten,
misinterpreted, corrupted, and invalidated over time.
There are at least three types of knowledge that we need to predict
the likelihood that we will be able to build and sustain
successfully a particular type of system. First is domain
knowledge, the knowledge of experts in a particular domain, e.g.,
pilots and aeronautical engineers in the domain of aircraft,
physicians and nurses in the domain of health IT, physicists and
chemists in the domain of sensor networks.
The second type is software engineering knowledge, which
comprises knowledge of the processes, techniques, and tools used
to produce the software. We must also know how well the
producers of a system have mastered that knowledge. Estimating

the impact of these different factors is known to be a difficult
research problem, but some results exist and can be used, such as
those underlying [5], [6]. We may think of the domain and
software engineering knowledge as primarily a summary of how
good we are at building systems of certain types. Continuing
baseline studies of specific domains will provide us with the
evidence needed to make estimations and to identify areas where
improvement is needed.
The third type is knowledge of a particular software system,
which includes knowledge recorded in the artifacts discussed
earlier, and which defines a particular software system being built
or modified. This knowledge may be known to developers and
sustainers, but personnel turnover can lead to its loss. A key
question is whether or not the knowledge about the system(s)
reflects the (haphazard) history of its development or has been
rationalized, in the sense of [3], to support its future use.
Understanding the development, evolution and expression of the
three types of knowledge is key to understanding how to improve
software production. This is because software production is
largely a process of making changes to artifacts. Whether building
a new system, or sustaining an existing one, we proceed by
making incremental changes. As knowledge about a system is
lost, the effort required to make a change increases dramatically.
System disorder and code interdependencies increase the
probability of introducing errors when making a change. One
might say that the entropy of the software production knowledge
base, including the code, increases drastically.
There are currently no standardized, systematic techniques and
mechanisms for assembling evidence that translates into knowing
how much confidence we should have that we can build a system,
or into predicting how well that system will meet its requirements
if we do build it. Neither are there techniques and mechanisms
for collecting evidence about what happens when we try to
improve the basis for our confidence, that is, make changes in the
way we build and sustain systems. If there were, we could start to
think of software engineering as a traditional engineering
discipline. We would also have a firm basis for knowing what
problems to attack to make substantial progress in developing
software engineering, and for estimating the value of particular
investments in new software engineering R&D.
A few attempts have been made to establish such standardization
within individual organizations [7], [8]. A key research (and
technology) issue is how to extend such attempts to cover entire
industries and market segments. Could we do this for all software
developed for a government agency? For all software developed
for use in the health care industry? For all software developed for
use in a nation? We should be working on this issue now.
Collecting evidence is a critical contribution of this effort to
improve software production. Using this evidence to reason about
the state of software and what works and what doesn’t, e.g., by
hypothesis testing, pilot studies, and assembly of examples of
successful innovations, is the second anticipated contribution of
this proposal. Educating and applying the resulting new
knowledge to improve next-generation workforce skills and
production practices is where we can achieve big gains based on
evidence. We can transition improved understanding to a wide set
of stakeholders via updated course curricula, tutorials at
conferences with high attendance by professional developers, and
proposals to standards committees. Federally sponsored
industry/academia experimental trials will be critical. We should

192

establish a strategy for making informed decisions by collecting,
reasoning about, and disseminating evidence on which to base the
decisions.

2.1 Recognizing Buildability and Correctness
Producing correct software confidently, consistently, and
systematically requires explicit statement of the three types of
knowledge. Changes in requirements, people, and technology
during software production all complicate the job and require that
the knowledge not only be made explicit, but be kept current and
correct. Iterative development, including the spiral model [9],
may be viewed as an attempt to do just that: create what you are
sure of first, show it to the stakeholders, especially the
customer/user, incorporate feedback, make it explicit (and
rational), then proceed to the next iteration. Product line
engineering also may be viewed as attempting to gather, make
explicit, and thereby reuse the knowledge needed to produce a
family of systems efficiently [12].
Again, we currently have little evidence that such techniques lead
to improvements in our ability to produce software. There are few
common evidence bases that industry can use to justify the initial
investment costs in employing such techniques, or that
universities can use to determine what to teach.

2.2 Recognizing Improvement
To gauge improvement, we must first characterize the starting
point. Many factors make profiling the current state difficult. For
example, the unavailability of data because of proprietary
concerns is often cited as a major obstacle to empirical research.
Consortia have had some past success in reducing the startup cost
of data acquisition, and may provide a model of collaboration.
Determining whether a change to existing software production
practice yields evidence of improvement requires a reasoned way
to derive an identification of the data to be collected from the
hypothesis to be investigated. To acquire the data, an integrated
instrumentation of the product and the production process is
needed. Such instrumentation also enables families of
experiments to be run [11] more cost-effectively.
Improvement is heavily context dependent. What will lead to
better software in one environment or domain may not have any
positive impact in another. Consequently, we propose a broader
use of sensitivity analysis to define which variations among
domains (e.g., real-time, interactive, power-constrained) perturb
the results of the experiments and may limit the applicable range
of the candidate solutions. Results need to be parameterized in
terms of their findings, much as research results on a new
pharmaceutical drug are clearly constrained by the population on
which it was tested.
Finally, what works for a project at one point in time may not
work in the future, because of evolution of the system, changes in
the workforce, or evolution in the market. Production of
sustainable software systems is continual, while current best
practices tend to focus on the pre-deployment state of the
software. We thus propose investigation of what sorts of
evidence are needed to support claims for improvement in
operational systems. Databases of defect, near-miss and accident
reports, for example, are a rich source of information about
operational experience that have not been adequately incorporated
into recommendations for future, similar systems.

3. ACHIEVING AN ENGINEERING BASIS
Many of the decisions and assumptions that comprise the three
types of knowledge are recorded imprecisely and informally, in
unnecessarily complex ways, and are subject to misinterpretation
and misunderstanding. Many are not explicitly recorded. They
may exist only in the minds of a small number of individuals for
possibly a limited period of time, and are communicated verbally,
in unmaintained notes, or in email. Events that invalidate the
decisions and assumptions can go unnoticed too readily. Rationale
is rarely recorded in a useful manner that can be maintained as
software evolves. As an example, every time a programmer writes
code, s/he makes decisions about what will be easy to change and
what will be hard to change. Sometimes these decisions are made,
reviewed, and documented before code is written, but often
decisions are made when the code is written and are never
documented or reviewed.
Software producers need both to preserve knowledge and to
convey knowledge for future use and reuse. Mechanisms to
preserve knowledge should be formal enough to allow machine
readability so that the knowledge can be automatically maintained
without incurring much added cost. Mechanisms to convey
knowledge must be available both as "pull" technologies (to query
and retrieve stored information) and as "push" technologies (pro-
actively to communicate, educate and cause to be remembered
needed information).
Making software production an engineering discipline means
identifying and standardizing (1) the types of knowledge that we
need to produce software, (2) the form in which the knowledge is
expressed and preserved, (3) the manner in which the knowledge
is communicated, and (4) the way in which future software
engineers are educated about what the knowledge is and the
process for recording, maintaining, and using it. For each of the
preceding points we may formulate questions or form hypotheses
regarding issues such as exactly what types of knowledge we
need, how should it be expressed, etc. For each question to be
answered or hypothesis to be tested, we seek to collect the
appropriate data in the appropriate environment, as was done for
the experiments in agriculture described in [10].

3.1 Some Initial Hypotheses
Collecting and analyzing detailed data enables us to increase our
understanding of software production by testing the following
initial hypotheses: (1) Decisions are recaptured many times, e.g.,
in needs and requirements documents, requirement specifications,
design documents, source code, test specifications, often in
slightly varying forms. (2) Artifacts other than source code are not
maintained over time as decisions, assumptions, and rationale
evolve, leading to their disuse, and to source code becoming the
definitive artifact. (3) Efforts to rediscover lost decisions,
assumptions, and rationale are expensive and ineffective,
especially when they must be based on using existing source code
for the recovery, most especially when the originators of that code
are not available. (4) Most software production is mostly
redevelopment, using existing decisions and assumptions, while
changing just a few of them. (5) Most software production does
not now include systematic planning for change, especially over
long system lifetimes.

3.2 Conducting Tests
We believe these hypotheses are testable through the collection of
evidence from software production from the start of production

193

until the time that the system is retired. We do not think that one
can conduct controlled experiments for large-scale systems. Just
as the medical and other communities collect evidence using
baseline studies on large populations in which convincing trends
appear, we can perform long-term baseline studies that show
convincing trends in software production. For example, data
showing the correlation of smoking with lung cancer was
collected over decades and became increasingly convincing.
Eventually, scientists identified the causal mechanisms at work.
Similarly, we can collect data about software artifacts and the
organizations and individuals who create and evolve them that we
can use to answer relevant questions and test relevant hypotheses.
We can detect trends, identify correlations, and then find causal
links that we can use to improve our software production
capabilities. As noted before, this has been done on smaller scales
than we are proposing [7], [8], but has not been tried on much
larger scales. Standardizing, collecting, maintaining, making
available, and analyzing the data automatically and unobtrusively
are not easy tasks, nor are they tasks that we can do right now.
However, other professions and industries have learned to do this
as a matter of course, and our society benefits from it. It is time
for software engineering to start the process.

3.3 Benefits
In addition to acquiring a deeper understanding of software
production, we will learn how to capture data about it that we are
not able to now. Shining the light of consistent, standardized,
repeatable measurement on software production may itself lead to
improvement. Asking for measures of recorded knowledge
requires that there be recording and methods for retrieving what
was recorded. Acquiring such knowledge will enable us to exploit
advances in computer science, hardware, social media, and
software engineering. It will help us create software development
methods, processes, and tools that are well suited to the goals of
organizations engaged in software production, including goals
such as reducing total ownership cost, risk, and schedule. We will
be better able to take advantage of human strengths and
accommodate human weaknesses. Further, an evidence-based
approach will provide greater confidence that we have done so.
Some may argue that “imposing” measurement will increase cost
and time to develop and sustain systems. It may be true that in
some cases, particularly where there is little recording of
knowledge now, that some initial development costs will be
incurred. However, studies of large organizations, such as [7],
indicate small overhead in measurement costs, partly because
much of the quantitative data collection and analysis is
automated.

4. SUMMARY
Because "reliable and robust software is central to activities
throughout society" [2], our known problems in software
production impose costs throughout society. We need to put
software engineering on an evidence basis, as other fields have
done. Our goal is to improve software production based on a
better understanding of it. We need to understand the current state
of the practice, and the effects of trialed improvements, and to
feed back this understanding to the software engineering
community. While we need to do this for the software production
industry as a whole, we must start on a smaller scale to
understand the problems better.

Some of the key questions to answer to implement this strategy
translate into the steps needed to start collecting and applying
evidence: (1) What are the areas of knowledge that are critical to
software engineering and how should we measure our
effectiveness in defining and using them? (2) How do we
standardize the collection of software measurement data across
different organizations? (3) What will be the incentives for
different organizations to collect the same types of data and
provide them for analysis and archiving? (4) Who will be the
keeper of the data? (5) How will data be made available to
researchers and practitioners who want to use it in different ways?
(6) Who will sponsor the research and development needed to
answer the preceding questions? Similar questions have been
answered, and the answers used to drive rapid, sustained progress,
in fields as diverse as agriculture, genetics, automotive
engineering, particle physics, health care, and semiconductor
manufacturing. Software engineering should be no different.

5. ACKNOWLEDGMENTS
Thanks to Grady Campbell and Jon Bentley for helpful
comments. We acknowledge NSF grants 0541163 and 0916275,
and support from ONR and DDR&E/S&T/IS.

6. REFERENCES
[1] Jackson, D., Thomas, M. and Millett, L.I., Eds. 2007.

Software for Dependable Systems: Sufficient Evidence?
Committee on Certifiably Dependable Software Systems,
National Research Council.

[2] President’s Council of Advisors on Science and
Technology. 2007. Leadership Under Challenge:
Information Technology R&D in a Competitive World,

[3] Parnas, D. L. and Clements, P. C. 1986. A rational design
process: how and why to fake it. IEEE Trans. on Software
Eng. SE-12 (Feb. 1986), 251-257.

[4] SIGSOFT Software Engineering Notes, Risks to the Public.
[5] Boehm, B. 1981. Software Engineering Economics.
[6] COCOMO, http://sunset.usc.edu/csse/research/

COCOMOII/cocomo_main.html
[7] Hackbarth, R., Palframan, J., Mockus, A., Weiss, D. 2010.

Assessing the state of software in a large enterprise,
Empirical Software Eng 15, 3 (June. 2010), 219-249.

[8] Grady, R., Caswell, D. 1987. Software Metrics: Establishing
a Company-Wide Program. Prentice Hall.

[9] Boehm B. 1986. A spiral model of software development
and enhancement. SIGSOFT SEN 11, 4 (Aug. 1986), 14-24.

[10] Gawande, A., 2009. How the Senate bill would contain the
cost of health care. The New Yorker (Dec. 17, 2009).

[11] Basili, V, Caldiera, G., McGarry, F., et al,, 1992. The
Software Engineering Laboratory: an operational software
experience factory. Proc of 14th ICSE, 370-381.

[12] Weiss, D. and Lai, C.R.T. 1999. Software Product Line
Engineering. Addison-Wesley.

[13] Kitchenham, B., Dyba, T, Jørgensen, M. 2004. Evidence-
based Software Engineering. Proc. of 26th ICSE.

194

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

