FITE: Future Integrated Testing Environment -

Michael W. Whalen
Department of Computer
Science and Engineering

University of Minnesota

200 Union St. 4-192

Minneapolis, MN 55455

whalen@cs.umn.edu

Andrea Polini
Computer Science Division
School of Science and
Technologies

Patrice Godefroid

Microsoft Research
Redmond, WA, USA
pg@microsoft.com

Nikolai Tillmann

Microsoft Research

Redmond, WA, USA
nikolait@microsoft.com

Leonardo Mariani
Dipartimento di Informatica,
Sistemistica e Comunicazione
Universita degli Studi di
Milano Bicocca
Viale Sarca, 336

_ Milano - ITALY,
mariani@disco.unimib.it

Willem Visser
Department of Mathematical
Sciences
Computer Science Division

Universita degli Studi di
Camerino
Via Madonna delle Carceri, 9
Camerino (MC) — ITALY

andrea.polini@unicam.it

ABSTRACT

It is well known that the later software errors are discov-
ered during the development process, the more costly they
are to repair, yet testing and automated analysis tools tend
to be applied late in the development cycle. In this paper,
we describe a future integrated testing environment (FITE)
that continually analyzes code for a variety of functional and
non-functional properties to provide developer feedback as
code is being written. This instant feedback allows develop-
ers to fix errors as they are introduced, increasing developer
productivity and software quality.

Categories and Subject Descriptors

D.2.6 [Software Engineering]: Programming Environments;

D.2.5 [Software Engineering]|: Testing—symbolic execu-
tion, tools; D.2.4 [Software Engineering]: Verification

General Terms

Verification

*This paper is derived from a whitepaper produced for the
Dagstuhl Workshop on Practical Aspects of Software Test-
ing, March, 2010

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FoSER 2010, November 7-8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

401

University of Stellenbosch
7602 Matieland — SOUTH
_ AFRICA
willem@gmail.com

Keywords

incremental analysis, compositional analysis, non-functional
analysis

1. MOTIVATION AND BACKGROUND

It is well known that the later software errors are discov-
ered during the development process, the more costly they
are to repair [5]. Recently, automatic tools based on static
and dynamic analysis have become widely used in indus-
try to detect errors, such as null pointer dereferences, array
indexing errors, assertion violations, etc [4]. Static analysis
techniques have also been used for property verification [11],
but scaling issues and the developer effort required to write
properties has limited the adoption of these techniques.

These techniques and tools are typically applied late in
the development cycle (if at all), and this late application
leads to several problems in the adoption and best use of
such tools. First, the errors detected at these latter phases
of development are expensive to repair. Second, it is difficult
to scale tools to analyze an entire large code base at a time.
Third, there are also human factor issues that come into
play, namely, that the volume of possible false errors over a
large code base will overwhelm the user and thus they ignore
the results. The inverse occurs as well: tool developers sup-
press many real errors in an effort to reduce false warnings
due to the usage patterns of these tools.

To address these issues we suggest that code should be
continuously analyzed starting from an early stage of devel-
opment, preferably as it is written. This instant feedback
will allow developers to repair errors as they are introduced,
when it is still cheap to do so. Similar to continuous in-
tegration with static analysis tools [2] and continuous test-
ing [13], the analyses will run in the background on multiple
cores or in the cloud, concurrent with development activi-
ties. The tools will be based on incremental analysis and
cached method summaries [7] that are used to provide pre-

cise analysis and dramatically increase the scale of programs
that can be analyzed. This in turn will improve user inter-
face issues, since the increment of code that is analyzed is
relatively small, leading to a relatively small number of error
messages being displayed to the user at one time. Dynamic
analysis, in particular testing, can also benefit since it can
use the static analysis results (for the code increment) to
produce tests to cover potential errors as well as provide
high code coverage.

2. FITE VISION

In order to make our ideas concrete, we propose an “in-
tegrated development environment of the future” with test-
ing and analysis playing a prominent, if not central, role.
We call this tool the Future Integrated Test Environment
(FITE). FITE will continuously test and analyze the incre-
ments and will produce recommendations to the user to re-
pair and test the code. To address scaling up from units,
FITE will combine incremental analysis with compositional
reasoning. Since the tool is based on interaction with a user,
human factors will play a large role in the design of FITE.
Specifically, the design of FITE should be modular to al-
low for many different functional and non-functional anal-
yses of interest. In order to not overwhelm the user with
too many recommendations from the tool to improve the
code and tests, we foresee a pluggable view-based approach,
where the user selects the kinds of analysis it wants to per-
form on the code (such as security, performance, reliability
or numerical precision analysis) and the tool produces only
recommendations addressing this selection. For example,
for ‘performance’ the tool might show code paths with high
worst-case execution times whereas ‘security’ might focus
on buffer overruns and information leaks. This approach is
similar to existing static analysis tools, such as Coverity [4],
which allow selective enabling and disabling of analyses.

3. FROM DREAM TO REALITY

In order to provide the immediate, concrete feedback nec-
essary for the FITE vision, several research problems must
be addressed, most notably in compositional analysis of pro-
grams, but also in presenting results to users in a useful but
not distracting fashion.

3.1 Compositional Analysis

The key to moving our vision to reality is to effectively
engineer compositional reasoning and analysis of large pro-
grams, in order to bridge the gap from unit analysis to sys-
tem analysis, and ultimately the gap between developers and
testers.

Two key sub-problems need to be addressed:

1. how to decompose large programs into smaller sub-
components by identifying interfaces where those sub-
components can be decoupled [6].

2. next, how to generate contracts at those interfaces, in
order to capture input preconditions and output post-
conditions in the form of constraints that may happen
or must hold [10].

We envision a semi-automated process to solve these two
problems of interface extraction and contracts gemeration.
Those contracts are code annotations that capture semantic
information about possible behaviors of the program.

402

Initially, in order to bootstrap the process, a fully-automatic
static analysis of the program could first infer candidates in-
terfaces on how to decompose the system (e.g., using heuris-
tics based on measuring the “complexity” of those interfaces)
and suggest those to the user. Those interfaces could then be
associated with pre-computed contracts of two types: may
contracts inferred by static analysis (such as “input integer
variable x may have any value” or “output return value y
may be any integer”) and must contracts inferred by dy-
namic analysis of executions obtained with existing or au-
tomatically generated test cases (such as “input pointer p
must be non-NULL” or “output pointer q always points to
an allocated struct of type foo”).

Despite this fully-automatic default mode, we really envi-
sion a interactive (semi-automatic) usage of the FITE tool
where the user can be continually involved by receiving and
providing feedback. Think of it as pair programming where
FITE is your coding and test partner who interacts with
you as you write code, test it, and explore its possible be-
haviors. By means of the may and must contracts which
can be inserted anywhere in the code (not just at compo-
nent interfaces), the user and the tool communicate with
each other, enriching the raw code with annotations captur-
ing the intent and correctness of the code. The tool also
actively suggests annotations by prompting the user (e.g.,
“do you assume this input pointer is always non-null?” or
“did you mean to return a pointer that points to sometime
allocated memory (program path A) and sometimes NULL
(program path B)?”).

Compositional reasoning allows the automatic inference
of properties of the whole system by combining properties
of sub-units: may contracts (summaries) can be combined
to prove that some bad things cannot happen (proofs) while
must contracts can be used for automatic test generation
of system tests and bug finding. The framework can be
extended to functional properties and non-functional prop-
erties.

3.2 Non-functional Analysis

Non-functional properties, such as performance, can cause
some of the most expensive and difficult to debug problems
within applications. However, which non-functional proper-
ties are important often depends upon the type of applica-
tion being written. For example, an authentication server is
critically concerned with security, while an embedded system
may have no security constraints but may require worst-case
execution time bounds and guarantees of numeric precision.

The FITE architecture will support plug-ins that can per-
form a wide variety of specialized, non-functional analysis.
The IDE itself will have the concept of an analysis load-set,
which allows a developer or project manager to determine
which non-functional analysis are available (and most im-
portant) for the class of application being created.

We consider a handful of non-functional analysis below.
These are meant to be representative rather than exhaustive:

Worst-Case/Average Case Timing Analysis: A stan-
dard area of concern for developers are possible per-
formance bottlenecks within an application. Symbolic
evaluation tools such as JPF [1] and Pex [14] allow ex-
amination of code paths to determine which paths are
longest or are known to make “expensive” API calls.

A plug-in that could flag potential performance bottle-

necks could involve predefined configuration data that
catalogues the relative cost of system functions and in-
tegration of this data with either (1) a symbolic simu-
lator to describe feasible paths through the code or (2)
an abstract interpretation engine. The symbolic sim-
ulator may have an advantage in that it may be able
to sum-across-paths to talk about variance between
symbolic paths and approximate average case perfor-
mance, while abstract interpretation may be better at
providing conservative guarantees about worst-case ex-
ecution time.

Security: Security problems are endemic to modern soft-
ware. Old problems such as buffer overflows, continue
to plague a variety of applications. More generally, at-
tacks involving authentication, back-doors, SQL injec-
tion attacks, input validation, and many other causes
cost billions of dollars in direct costs (to find, fix and
patch) and in indirect costs (e.g., identity theft).

Existing software tools, such as SAGE [9], can auto-
mate many buffer overflow checks. SAGE is designed
to run on large binary programs. We believe that we
can create more precise analysis by reducing the scale
of programs to be analyzed, and to broaden the cat-
egory of attacks that can be checked. For example,
statements creating dynamic SQL queries should be
flagged and analyzed to prevent SQL injection attacks.
FITE should both generate test cases that demonstrate
SQL-injection attacks and also provide automated sug-
gestions for writing SQL-injection resistant code, e.g.,
using stored procedures with typed parameters.

Numeric Precision: Floating point numbers do not ex-
actly represent real numbers, and the imprecision be-
tween complex computations over the reals and over
floats can become significant. For example, the failure
of the Patriot missile system (resulting in the deaths of
28 American soldiers) was due to cumulative impreci-
sion in a floating point timing routine [12]. Determin-
ing the loss of precision is therefore a common anal-
ysis that must be performed, usually manually, over
embedded systems code.

Using symbolic execution, it is possible to describe im-
precision at a per-path level. A néiive approach would
take the symbolic path and concretize it and then use
interval analysis to examine the imprecision. It is not
enough to enumerate the paths, however: one must
examine the range of concrete values that are possible
instantiations of the path in order to bound the pre-
cision errors that are possible. FITE should include
a plug in that can generate both a constraint describ-
ing worst-case precision errors and a test (or series of
tests) that demonstrate imprecise paths.

Concurrency: It is difficult to reason compositionally
about concurrency using most programming lan-
guages. However, concurrency bugs are among the
most expensive to detect and fix. Recent work, such as
Symbolic Deadlock Analysis [8], can describe contacts
between libraries and clients that guarantee deadlock
free execution. This work is scalable enough to ana-
lyze large systems (1M SLOC Java / hour). Once the
contracts are known, it is possible to cheaply analyze

403

violations of the contract and present the result as a
test case.

However, the other main concurrency problem of data
races currently has no simple analysis solution. A task
that could execute in the background and do pairwise
analysis of “likely” concurrent method calls that could
involve data races using a tool like CHESS [3] could
be extremely valuable. The research challenges here
involve the scale of the analysis and determination of
“likely” interacting methods.

3.3 Regarding the user interface

Static analysis can determine potential program errors.
Today, a typical IDE shows error messages of the type checker
and other static analysis tools, relating them to particular
lines in the code. We propose to augment this information
with information gathered from and related to test cases.
This includes already existing test cases as well as new test
cases generated in addition. The additional information is
meant to guide the developer towards errors directly related
to the code the developer is currently working on. It is im-
portant that the additional information does not distract the
developer from the main objective of writing code. Only rel-
evant information must be shown. If a test case exposes an
error, the code editor will associate the corresponding line
in the code with the failing test case, also showing the stack
trace of the failure. In addition to existing test cases, FITE
generates new test cases, e.g. with (dynamic) symbolic exe-
cution. New test cases can be generated from scratch, or by
“fuzzing” existing tests. When generating new tests, we will
leverage the semi-automated analysis of interface boundaries
and contracts. The analysis of existing test cases, and the
generation of new test cases may happen continuously in the
background, possibly on spare cores of modern multi-core
machines, or the analysis may be delegated to the cloud.
The developer can choose to include generated test cases
into a regression test suite with a single button click, as for
example shown in Figure 1.

Since environment abstraction, i.e. automated generation
of mock objects, may cause generation of test cases with spu-
rious errors, i.e. errors which cannot occur in the integrated
system, we propose a ranking of generated tests, and their
failures. The result can be visualized by a “heat map” in
the editor, which illustrates the points in the code at which
generated tests cause failures, showing those failures which
are most likely to reproduce in the integrated system in the
most threatening color. When test cases cause a failure, an
automated failure root cause analysis determines the failure
condition, and suggests to the developer the addition of a
precondition into his code, effectively raising the failure to
the abstraction level of the code the developer is currently
working on. This has already been realized in Pex, as shown
in Figure 2.

When the developer write new test cases, the editor will
give suggestions what methods to call in a new test case.
To this end, existing test cases and their code coverage are
analyzed in the background to determine which methods of
the product code or underrepresented in the existing test
cases.

4. PROCESS ISSUES

So far the discussion has been mainly focused on unit anal-
ysis, from the developer’s point of view. However, the ap-

Pex Exploration Results - rlopped - 11 tests, 123 runs

1 explosstice: SteingExtensiorn: Copitalme{ning] -8 k=

wakse resull Summarny/Esception Ermor Message

a1 nul AmgurreeniFhilF pption
- 2 ’

2 T T I I A
&)

a5 p P

&6 ne

C- Ip

& B nen

- .

- 0 ppp Prp

- n e pp

e e Exploration Results | 4 Freor List | 5] Output _I-T"' Faruke

G-

Wakue cannot be null Parameter name: valu [P ——

%y | Veews ~

=) Dietaits:

[Tetbdethod|
{typecd[StnngExtensionsTest]l]
pubilic void Capitalimed3]

stning 5
% = this. Copitalze[™0");
Assart AreEgual < ibring =™, 1)

Figure 1: Saving an automatically generated test input.

#| Details._.
=] Stack trace:

System.MullReferenceException
at StringExtensions. Capitalize(String)

at StringExtensionsTest. Capitalize(String)

E) GoTo ke]Debug ﬂ.._.‘.l Add Precondition... ||/ Allow Exception.. Send To =

| | Add Precondition to StringExtensions.Capitalize(5tring value) L

if (walue == (string)null}
throw new ArgumentMullException("value");

Figure 2: Adding an automatically generated precondition to a method

proach and the environment we envision should assist devel-
opers and testers during the whole application development
process. It would be particularly effective to anticipate pos-
sible integration issues at the time of developing each single
module composing the entire system.

The FITE environment will base its analysis strategies
and corresponding results taking into account also the other
modules to which the module under development is inter-
related. To do this the FITE environment will need to be
implemented as a distributed and collaborative environment
running on the cloud. In this phase particularly important
are possible interactions with legacy modules to be inte-
grated within the system. For such modules FITE will need
to include an analysis step to investigate and highlight pos-
sible integration issues. The analysis is performed on-the-fly
while the developer is coding the module, analyzing the con-
sequences of the decisions on legacy module usage.

The analysis can successively be pushed even further per-
mitting to derive integration test cases covering possible in-
teraction sequences within the system when component are
ready to be released. The integration steps will be sup-
ported by FITE also through the semi-automatic derivation
of stubs for the different test cases.

4.1 From unit to integration / system testing

While a unit test targets a single isolated features, a sys-
tem test spans multiple features. Via semi-automatically in-
ferred interface boundaries/contracts, FITE is able to assist
the developer locally with unit tests, where those parts of
the system not currently under test are mocked. In addition
to traditional interface contracts, we propose to augment in-
terface descriptions with a facility that allows to turn such
mock instances into real instances. For example, when the

404

database was mocked while testing a web application, then
it should be possible to turn such a mock database state into
an actual database state. This will in effect allow to turn
unit tests into integration tests.

S. CONCLUSION

Current approaches for test generation and static analysis
are used at the back end of the software development cycle,
which makes them difficult to scale and difficult to use. In
this paper, we propose an alternate vision of a V & V process
that is performed continuously as the software is created.
To make these ideas concrete, we introduced the notion of
FITE, a future integrated test environment. This notion
helps to crystalize several fruitful directions of research. We
believe that such an environment, if available, would spur
the widespread adoption of rigorous static and exhaustive
analysis techniques, and significantly reduce costs and cycle
times for developing high quality software in the future.

Acknowledgements: This paper was based on a whitepa-
per produced for the March 2010 Practical Aspects of Soft-
ware Testing Dagstuhl Seminar. Many thanks to Mark Har-
mon, Henry Muccini, Wolfram Schulte, and Tao Xie for or-
ganizing an excellent seminar.

6. REFERENCES

[1] S. Anand, C. Pasareanu, and W. Visser. JPF-SE: A
symbolic execution extension to Java PathFinder. In
Proc. of 13th TACAS Conf., volume 4424, page 134.
Springer, 2007.

[2] N. Ayewah and W. Pugh. The google findbugs fixit. In
ISSTA ’10: Proceedings of the 19th international

symposium on Software testing and analysis, pages
241-252, New York, NY, USA, 2010. ACM.

T. Ball, S. Burckhardt, K. Coons, M. Musuvathi, and
S. Qadeer. Preemption sealing for efficient concurrency
testing. In Proceedings of the 16th Annual Conference
on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), March 2010.

A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton,

S. Hallem, C. Henri-Gros, A. Kamsky, S. McPeak, and
D. R. Engler. A few billion lines of code later: using
static analysis to find bugs in the real world.
Communications of the ACM, 53(2):66-75, 2010.

B. Boehm. Software Engineering Economics.
Prentice-Hall, Englewood Cliffs, NJ, 1981.

A. Chakrabarti and P. Godefroid. Software
Partitioning for Effective Automated Unit Testing. In
Proceedings of EMSOFT’2006 (6th Annual ACM &
IEEE Annual Conference on Embedded Software),
pages 262-271, Seoul, October 2006. ACM Press.

S. Cherem and R. Rugina. A practical escape and
effect analysis for building lightweight method
summaries. In In CC 2007: 16th International
Conference on Compiler Construction, pages 172—186,
2007.

J. Deshmukh, E. A. Emerson, and

S. Sankaranarayanan. Symbolic deadlock analysis in
concurrent libraries and their clients. In ASE ’09:
Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, pages
480-491, Washington, DC, USA, 2009. IEEE
Computer Society.

405

[9]

(10]

(11]

(12]

(13]

(14]

P. Godefroid, M. Y. Levin, and D. Molnar. Automated
whitebox fuzz testing. In Proceedings of NDSS’2008
(Network and Distributed Systems Security), pages
151-166, February 2008.

P. Godefroid, A. Nori, S. Rajamani, and S. Tetali.
Compositional May-Must Program Analysis:
Unleashing The Power of Alternation. In Proceedings
of POPL’2010 (37th ACM Symposium on Principles
of Programming Languages), Madrid, January 2010.
S. P. Miller, M. W. Whalen, and D. D. Cofer.
Software model checking takes off. Commun. ACM,
53(2):58-64, 2010.

T. U. S. G. A. Office. Patriot missile defense report.
Technical Report, B-247094. Available at:
http://www.fas.org/spp/starwars/gao/im92026.htm,
February 1992.

D. Saff and M. D. Ernst. Reducing wasted
development time via continuous testing. In
proceedings of the 14th International Symposium on
Software Reliability Engineering. IEEE Computer
Society, 2003.

N. Tillmann and J. de Halleux. White-box testing of
behavioral web service contracts with pex. In
TAV-WEB ’08: Proceedings of the 2008 workshop on
Testing, analysis, and verification of web services and
applications, pages 47-48, New York, NY, USA, 2008.
ACM.

