
Infringo Ergo Sum

When will software engineering support infringements?

Fabio Massacci
University of Trento, Trento, Italy

fabio.massacci@unitn.it

ABSTRACT
Once upon a time a professor of computing and a father
was complaining at a radiology ward. A CD with the X-
rays of his son’s chest had garbled images. Unfortunately,
the CD burning process has been outsourced and, in com-
pliance with e-health security policies, technicians could not
see the images on the system. Only doctors could. The nurse
had a decision to make: sidestep the father (send him away
with empty hands to the pneumology ward) or sidestep the
system (give the technician the doctor’s password and thus
the ability to access all images and not just this one). As
a father he was happy of her decision. As a professor, this
knowledge was of meager and unsatisfactory kind.

Any human decision maker who experienced the need of a
local IT infringement in order to achieve her business goals
knows that she is offered only the choice between strict com-
pliance (and failure of business goals) or global violation (and
failure of security goals).

Software engineers do not simply know how to deal with
infringements. I believe that a different alternative should
be possible. The goal of this paper is to sketch the challenges
of such unexplored scientific alternative.

Categories and Subject Descriptors
K.6.5 [MANAGEMENT OF COMPUTING AND IN-
FORMATION SYSTEMS]: Security and Protection; D.2.11
[SOFTWARE ENGINEERING]: Requirements, Speci-
fications—Elicitation methods, methodologies; H.1.2 [MODELS
AND PRINCIPLES]: User/Machine Systems—Human Fac-
tors, Software psychology

General Terms
Design, Human Factors, Security

Keywords
Access Control, Infringement management, Human Factors,
Requirements, Security, Socio-Technical Systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

1. INTRODUCTION
This simple, and unfortunately real-life, example stems

from an irreversible evolution that IT systems have under-
gone: we no longer have a software system whose design
and behavior can be predicted with purely technical meth-
ods. We face a socio-technical system (STS) [21] that

involve complex interactions between software com-
ponents, devices and social components (people
or groups of people), not as users of the software
but as players engaged in common tasks [10].

Human decisions will not necessarily be software supported,
nor planned in advance, sometimes nor even informed, but
they will nonetheless be taken. The software has not advised
the nurse of alternative solutions. Still, she had to choose.

The parallel technical developments of service-oriented ar-
chitectures, remote privilege management infrastructures,
remote maintenance and outsourcing have distributed and
multiplied the points in which humans interact with a STS
and control or anyhow influence its behavior. The rationale
and even the potential existence itself of this particular de-
cision point by the radiology staff are likely unknown to IT
department.

How to manage requests to violate the specified company’s
policy? The engineering solution of choice is to escalate ac-
cess requests to more powerful entities in the system. This
approach is hardly usable even for personal users [29, 14]:
how many users would click “No” on the “Do you allow ser-
vices.exe1 to modify your PC’s configuration?” pop-up).
This (attempt to a) solution is even less appropriate to STS,
as noted by [22] in a field study on IT risks in finance:

These massive collections of people lead to greater
anonymity of the employees as they fade into the
masses and can conceal actions that challenges
modern security. . . This is worsened by the orga-
nizational counterpart of service oriented archi-
tectures. . . it becomes less evident who reports
to whom and who is responsible for permitting
and terminating data access. Employees may
no longer have direct managers as roles such as
functional manager, group manager, engagement
manager, review manager, and co-manager have
become prevalent in financial institutions, pro-
fessional service firms and corporations.

1The tragedy is that this name is not invented, it runs on
your Windows box and of course you have no clue about its
doings.

233

Usability studies (e.g. [2, 27]) also confirm the widening gap
between policies decision makers and policy implementors,
frequently due to the existence of many decision makers. In
my own example, who should have authorized the nurse?
The head of radiology? the head of the pediatrics? The
head of IT department? The head of personnel?

The key word here is change. The context for which the
e-health software was designed has changed and the nurse
needed to cope with it. The S-side of STS can manage
changes directly: we know that we might need to do dif-
ferent things than originally stipulated (i.e. infringements)
because things change but goals stay the same.

The scientific challenge is that the T-side is not so respon-
sive to changes while keeping a reasonable security. While
significant research exists on enforcement formal models and
techniques (e.g., Polymer [3], PSLAng [9], and Security-by-
Contract [7], Load-time security certification on Android [8],
Usage Control [20], etc.), and significant methods for secu-
rity engineering (e.g. anti-goals [28], misuse cases [25], secu-
rity problem frames, SI*/Secure-Tropos [11], etc.) or secure
software development (e.g. Microsoft SDLC, or BSIMM)
they are all permeated by the idea that infringements are
violations and as such should not be permitted. Whenever
infringements are permitted, this permission is totally as-
signed to the human component, being it a designer or a
user without supporting her judgments.

Thus software infringement management is not predictable,
circumstances are not replicable and the system cannot later
audit and distinguish between correct infringements (where
it was the best option, e.g. to save a patientŠs life) from
incorrect ones (e.g. frauds).

We should design a technical solution so that organiza-
tions can balance the need of getting the work done (send a
patient to the pneumology ward with the correct diagnosis)
in presence of changes to the original course of action (the
garbled x-rays) without incurring each and every time the
risk of unforeseen toxic over-entitlements (the give away of
the doctor’s password).

This is the next frontier for software engineering: soft-
ware management of human infringements due to changing
circumstances. In order to address it we need at least to

1. capture business goals and trust relations among hu-
mans that might mirror illegal but de facto relations
(the nurse had the doctor’s password all the way through);

2. manage infringements in presence of changed circum-
stances (the failure of x-ray standard procedure with
the request for a timely answer by a colleague in an-
other ward);

3. identify higher-order policies that humans use to solve
inconsistencies and that takes into account goals and
priorities (if the image was not affected but only the
report, nor a child be involved, most likely the nurse
would have just handed me a fresh printout of the re-
port and told me to come later for a new CD).

The practical problems we face are evident and in the rest
of the paper I will discuss the societal impact of the challenge
(by looking more in details at the figures that makes the
headlines in §2) and whether it is actually a research problem
and not just a problem of lousy implementation (by looking
at the research literature to see what foundational concepts

it misses in §3). Finally I will conclude with a more detailed
description of the research challenges (§4).

2. SOCIETAL IMPACT
The key claim here is that major software security prob-

lems stem from decisions of “users” that by making wrong
decisions allow other (malicious) users to subvert the func-
tionalities of the STS. This has been an old claim by E.
Shawn and others’ essay on insider threats and the psychol-
ogy of potentially dangerous insiders:

Paradoxically, [. . .] there has been little sys-
tematic study of vulnerable insiders, while major
investments are being devoted to devising tech-
nologies to detect and prevent external penetra-
tions. Technological protection from external threats
is indeed important, but human problems can-
not be solved with technological solutions. With-
out a detailed examination of the insider problem
and the development of new methods of insider
risk management, such an unbalanced approach
to information systems security leaves critical in-
formation systems vulnerable to fraud, espionage
or sabotage by those who know the system best:
the insiders [24].

Yet, the headlines are populated by smart, technical pene-
trations and exploitations of bugs by viruses, worms, sniffers
and keyloggers. The 2008 survey of IC3 showed a total loss
of frauds to individual of $264.6 million. A study on the
underground economy [15] showed that tens of thousands of
credentials are stolen from e-Commerce websites, webmail
providers (such as Windows Live, Yahoo, Google), or so-
cial networks (Facebook, YouTube, etc.) with almost 6.000
credit card numbers in the just a fraction of the dropzones
of a key logger.

While such data offers a picture of the internet as the wild
west of organized criminal hackers, a more careful analysis
of the data reveals a completely different picture. Shawn et
al paper was published in 1998 (almost 10 years ago). In
the same year, the FBI Computer Crime Survey reported
the average cost of a hacker penetration at $56,000, while
the average insider attack was $2.7 million.

Ten years later, attack types have changed (keyloggers and
botnets have replaced hackers and viruses) but the price dif-
ferential between external and internal attacks has even in-
creased! The IC3 reports on individual fraud in 2008 showed
indeed that

“Nearly fifteen percent (14.8%) of these com-
plaints involved losses of less than $100, and (36.5%)
reported a loss between $100 and $1,000. In
other words, over half of these cases involved a
monetary loss of less than $1,000.

In sharp contrast, a US Secret Service study from the
same year showed that losses reported to insider frauds took
no less than $500 and with more than 50% of respondents
claiming losses over $20.000 with 12 respondents claiming a
loss over $1.0 million. Further 28% of respondents added a
significant loss in term of reputation

If one dig further on the figures of the IC3 reports, more
than 90% of all frauds were indeed due to the (more or less
gullible) human decision makers: non-delivery of merchan-
dise and/or payment (32.9%), auction fraud (25.5%), con-
fidence fraud such as Ponzi schemes, computer fraud, and

234

check fraud (19.5%) made almost all referred complaints.
Traditional scams such as Nigerian letter fraud, phising etc.
together represented less than 9.7%.

In a nutshell, attacks to the T-component of the Internet
as STS might make the headlines but play a significantly
minor role in the impact on digital confidence which was
mostly driven by the decision of humans, my key point.

3. MISSING FOUNDATIONAL CONCEPTS
We know how to engineer a system if we have some se-

curity policies. They can just be considered requirements
(albeit of a particular kind). But what we can do if having
a security policy is not enough?

The traditional RBAC model [23] was essentially proposed
to better organize the assignment of permissions to user in
order to reflect the organizational structure. Of course re-
ality requires many access decisions to be dependent on the
context and this lead to an escalation of RBAC models with
constraints such a time, location, or run-time context [4,
6]. In order to provide more dynamicity a number of mod-
els have been proposed to regulate what a user can do in
a workflow by using obligations languages for privacy poli-
cies [1] or usage control rules (=access control + monitoring
users) [18, 20].

All these frameworks are interesting and appropriate in
their application domains but they all are in the same frame
of mind: at the beginning of the day the administrator sets
the rules, as complicated and with as many exceptions as he
can possibly write, and then the system will provide a strict
enforcement of those conditions. The system can also mon-
itor the user to make sure that he complies with additional
obligations. Wrong access or missing obligations are sins to
be prosecuted.

In order to avoid unfair prosecution we must make sure
that all possible legal sequences are captured by the policy
and not just the main workflow. In principle, we could think
of eliciting all possible exceptions. Programming languages
such as Java have try-catch constructs and a number of mod-
eling and requirements languages allows for the description
of exceptions in business processes (e.g. [26, 19] for the little
JIL language). Unfortunately the very idea of investigating,
reporting, regulating, and implementing all possible excep-
tions would be out of synch with the IT budget in the real
world: it is simply too expensive2. If any of the access con-
trol system described above had been the back-end in my
personal episode, the nurse at the ward would have likely
faced the same decision. Even if we had an unlimited bud-
get, there could still be cases in which we cannot actually
list those exception for social reasons (as opposed to just
technical incompleteness). I will discuss this phenomenon
more in detail in the next section.

If access control papers don’t allow for managing infringe-
ments, we could turn ourselves to run-time security enforce-
ment mechanisms. For example Hamlen’s work on rewriting
[13], and Ligatti et al. works on edit automata [3]. Most
works had a running system counterpart capable of enforc-
ing those security policies [9, 12, 17].

2When I was deputy rector for ICT procurement, the RBAC
system of accounting for the University of Trento included
around 100 roles, 1500 activities, and exceptions to the 60K
processes were “uncountable”. . . as it would have required a
Deloitte consultant at 1KEuro/day to count them precisely.

Yet, as we have shown in [5], there is a gap between the
theoretical constructions presented in the papers and their
practical implementation. This gap can be explained by the
too coarse grained classification provided by the formal prop-
erties of a “good” software enforcement mechanism: trans-
parency and soundness.

Soundness says that every output of enforcement mech-
anism should be valid; transparency says that in case of
valid input, the output should be equal to the input. Prac-
tical software systems (such as Polymer [3], PSLang [3] or
our own Security-By-Contract inline monitor [7]), being im-
plemented, will always correct the bad traces in some way
(possibly useful to the user). But formal papers on enforce-
ment don’t provide formal means to distinguish those ways
to deal with bad traces,. Most papers focused on the shape
of good traces that can be potentially enforced with this or
that enforcement mechanism.

In practice, this is not enough. What distinguishes en-
forcement mechanisms is not what happens when traces are
good, because nothing should happen (transparency, isn’t
it?). The interesting part is how precisely bad traces are
converted into good ones. To this extent soundness only
says they should be made good. We see a glimpse here
of our problem (users may misbehave) but the solution is
under-specified (back to strict compliance, but how?).

Let’s start from a concrete example of a workflow for drug
dispensation, in which doctors must read through therapeu-
tical notes. Suppose now a doctor forgot to click through
one note. A principled implementation of the formal con-
struction used by Ligatti, Bauer and Walker [3] to show that
edit automata can enforce any renewal policy, would sup-
press actions of doctors, until the guilty one would insert
that missing click, potentially for ever if such action was no
longer possible. In [5] we provided an alternative mechanism
that suppresses just the part of execution where the doctor
made this infringement, but keeps working for the rest.

Where is the problem? both our approach and Ligatti’s
approach satisfy soundness and transparency on good traces.
So we cannot formally distinguish between an enforcement
system discarding the work of a day and a system drop-
ping the last 20 minutes. Further, both software systems
can claim to provide a faithful implementation of the pol-
icy because the specification of infringement management is
traditionally not part of the policy. Clearly, these notions
of soundness and transparency are not enough to provide a
security foundation for software when humans are involved.

4. RESEARCH CHALLENGES
As shown above, we need a new foundational concept:

Challenge 1. The software enforcement mechanism should
formally capture the idea of “reasonable” behavior when the
requests (of the users) do not correspond to the policy.

The first pillar of software engineering textbooks is that sys-
tems should be designed to meet the stated requirements
(including user’s expected behavior). Here, we are hacking
away the basement of software engineering courses: seen all
those use cases? Well, your system ought to be reasonable
when the users do not behave like that.

This might look an absurd requirement for a designer
of a T-component but it is an obvious observation for S-
components. S-components have a clear notion of “venial
errors” and “serious errors” and do not to bring a critical

235

process to a halt for a venial error. The challenge we face
is that the T-side ignore this notion: all deviations are se-
rious policy violations and are prosecuted by the T-system
as such. As a consequence, the human decision maker finds
the behavior of the T-component irrational and decides to
bypass it. The result is a security failure.

The challenging part for the designer is that the word
“reasonable”: the users involved must be convinced that the
software’s behavior is not arbitrary. A software with in-
fringement management capabilities should be able to repro-
duce the typical human decision strategies such as veto, fa-
vor, complementary, substitutability and other interactions
among the viewpoints of the different decision makers [16].
The agents who legitimately infringed the policies - because
at the moment it was the most reasonable action to take -
should be able to demonstrate and justify the legitimacy of
their actions.

In order to be (or look) reasonable, we must of course
elicit requirements on what is a reasonable behavior but. . .

Challenge 2. No human can write in a formal docu-
ment how to violate the letter of the company policy while
enforcing its spirit. We must capture “unspeakable require-
ments and trust relations” in the work practice.

Human components have certain trust relations that are im-
plicit in their workpractice. In the Trento-Toronto line of
work that I started with John Mylopoulous, Nicola Zan-
none and others we have tried to draw requirement models
with trust constructs (eg [11]). Yet, we also sinned, as many
requirement engineers from the RE assumptions that such
relations can be made explicit. Many years of case studies
showed me that what the users can explicitly tell is only a
fraction of reality.

The problem we face for ”security exceptions” is that those
are requirements that cannot be formalized and still they are
the de-facto standards. Eliciting these requirements is the
real challenge. I’m sure that nowhere in the requirements
documents of the e-health system and in the privacy policy
document of the hospital there is a statement specifying that
nurses can have doctors’ password but this is a well known
phenomenon3.

If we want to meet this challenge we must be able to design
models of trust appropriate for dynamic and evolving STS.
the models should capture real but unspeakable word prac-
tices of users and organizations: the opinions of the users
and their attitudes towards the activities supported by the
software. Understanding their mental models on “how they
think the stuff works” as opposed to “how the stuff actually
works” as done in [29] is important to identify appropriate
countermeasures to security threats. having this difference
in mind, the T-side could be able to ascertain, from the goals
and anti-goals of the actors and their behaviors, that a trust-
relation applies and consider some actions venial errors and
other actions serious errors. In order to do this, we need

3Another example: you were invited to a meeting located
at an arbitrary EU Commission premise but your name is
not on the list of authorized people at the entrance. What
happens? If you know the officer’s name and the meeting’s
title, the guard adds you and your passport details with
a ball pen at the end of the printed list. Exercise for the
reader: find trace of this process in any formal document.
Once in January 2010 the guard was new and wanted to
stick to the official process. It was a chaotic but interesting
experience, in primis for the EU officer who invited us. . .

to understand work practices with ethnographic studies and
try to refine decision theories when many stake holders are
present. It is a new type of software engineering (trust en-
gineering?) where the focus is no longer system or interface
design but rather the human–human and human–computer
decision making process.

Once we have understood how humans take (security) de-
cisions and designed a“reasonable”system that can supports
them what else is missing?

Challenge 3. It should be possible to derive in a prin-
cipled way the enforcement mechanism from the policy and
the high-level criteria for dealing with infringements.

We don’t want a specification of the company policy with all
possible exceptions and infringements, a spaghetti-workflow,
likely full of errors and incomprehensible.

What we need is to extend the“routine”workflow with the
notion of higher-level policies to provide technical support
to “reasonable” infringements. For example, by introducing
formal notions corresponding to venial errors or amendable
errors in a software process, and by capturing notions of
accountability and awareness of the context. Using these
notions the software engineer should design a T-component
that only takes the default policy and a specification on how
to deal with venial errors and cope with them wherever they
appear. If we change the notion of venial errors, the software
for infringement management should follow suit. This is the
bridge between the first and the second challenge.

In order to validate the challenges, it is important to have,
beside theorems and prototypes, a validation with real users.

The challenges are ambitious and risky but worth taking:

• If we do no capture the higher-level mechanisms for
policy enforcement, we will just generate yet another
*-RBAC , with more sophisticated constructs to deal
with all uncountable exceptions.

• If we don’t capture unspeakable trust requirements
we will generate another secure software engineering
methodology. There will be less buffer overflows but
not more secure software.

• If we do not involve real users in the validation, we
could never be sure that the way decision making ac-
tually take place is the way designers have speculated.

Until software engineering research solves these challenges,
the (mis)use case diagram for infringement management in
STS could only include soft-eyes-and-kind-words as the only
relationship between the human user (the father) and the S-
component (the nurse) while they side step the system.

5. ACKNOWLEDGMENTS
I would like to thank N. Bielova, C. Labreuche, M. Nalin,

A. Pretschner, A. De Angeli, M. Clavel, S. Etalle, Y. Pain-
daveine, D. Presenza, M. Petkovic, and N. Zannone for many
useful comments on the topic. Most of the good ideas de-
scribed here stemmed from discussions I had with them. The
remaining weird ones are of course mine.

This research is partly supported by the EU-FP7-IST-IP-
MASTER project4, the EU-FP7-FET-IP-SECURECHANGE
project5, and the EU-FP7-IST-NoE-NESSOS project.

4www.master-fp7.eu
5www.securechange.eu

236

6. REFERENCES
[1] M. Backes, B. Pfitzmann, and M. Schunter. A toolkit

for managing enterprise privacy policies. In Proc. of
the 8th ESORICS, volume 2808 of LNCS, pages
162–180. Springer-Verlag, 2003.

[2] L. Bauer, L. F. Cranor, R. W. Reeder, M. K. Reiter,
and K. Vaniea. Real life challenges in access-control
management. In Proc. of ACM CHI’09, pages
899–908. ACM Press, 2009.

[3] L. Bauer, J. Ligatti, and D. Walker. Edit automata:
Enforcement mechanisms for run-time security
policies. Int. J. of Inform. Sec., 4(1-2):2–16, 2005.

[4] E. Bertino, P. A. Bonatti, and E. Ferrari. TRBAC: A
temporal role-based access control model. TISSEC,
4(3):191–233, 2001.

[5] N. Bielova, F. Massacci, and A. Micheletti. Towards
practical enforcement theories. In Proc. of The 14th
Nordic Workshop on Secure IT Systems (NordSec’09),
volume 5838 of LNCS, pages 239–254.
Springer-Verlag, 2009.

[6] M. L. Damiani, E. Bertino, B. Catania, and
P. Perlasca. Geo-rbac: A spatially aware rbac.
TISSEC, 10(1):2, 2007.

[7] L. Desmet, W. Joosen, F. Massacci, P. Philippaerts,
F. Piessens, I. Siahaan, and D. Vanoverberghe.
Security-by-contract on the .net platform. Inform.
Security Tech. Rep., 13(1):25–32, 2008.

[8] W. Enck, M. Ongtang, and P. McDaniel. On
lightweight mobile phone application certification. In
Proc. of CCS’09, pages 235–245. ACM Press, 2009.

[9] U. Erlingsson. The Inlined Reference Monitor
Approach to Security Policy Enforcement. Technical
report 2003-1916, Department of Computer Science,
Cornell University, 2003.

[10] J. L. Fiadeiro. On the challenge of engineering
socio-technical systems. In Software-Intensive Systems
and New Computing Paradigms, volume 5380 of
LNCS, pages 80–91. Springer-Verlag, 2008.

[11] P. Giorgini, F. Massacci, J. Mylopoulos, and
N. Zannone. Requirements engineering for trust
management: model, methodology, and reasoning. Int.
J. of Inform. Sec., 5(4):257–274, 2006.

[12] K. Hamlen, G. Morrisett, and F. Schneider. Certified
in-lined reference monitoring on .net. In Proc. of the
2006 workshop on Prog. Lang. and analysis for
security, pages 7–16. ACM Press, 2006.

[13] K. W. Hamlen, G. Morrisett, and F. B. Schneider.
Computability classes for enforcement mechanisms.
TOPLAS, 28(1):175–205, 2006.

[14] C. Herley. So long, and no thanks for the externalities:
The rational rejection of security advice by users. In
Proc. of the 2009 New Sec. Paradigms Workshop,
pages 133–144. ACM Press, 2009.

[15] T. Holz, M. Engelberth, and F. C. Freiling. Learning
more about the underground economy: A case-study

of keyloggers and dropzones. In Proc. of the 14th
ESORICS, volume 5789 of LNCS, pages 1–18.
Springer-Verlag, 2009.

[16] C. Labreuche. Argumentation of the decision made by
several aggregation operators based on weights. In
Proc. of the Int. Conf. on Information Processing and

Management of Uncertainty in Knowledge-Based
Systems, pages 683–691, 2006.

[17] J. Ligatti, L. Bauer, and D. Walker. Run-time
enforcement of nonsafety policies. TISSEC,
12(3):1–41, 2009.

[18] J. Park and R. Sandhu. The UCON ABC Usage
Control Model. TISSEC, 7:128–174, 2004.

[19] H. Phan, G. S. Avrunin, and L. A. Clarke.
Considering the exceptional: Incorporating exceptions
into property specifications. Technical Report
UM-CS-2008-32, Dep. of Computer Science, Univ. of
Massachusetts, 2008.

[20] A. Pretschner, M. Hilty, and D. Basin. Distributed
Usage Control. Commun. ACM, 49(9):39–44,
September 2006.

[21] J. Rooksby, M. Rouncefield, and I. Sommerville.
Testing in the wild: The social and organisational
dimensions of real world practice. Comp. Supported
Cooperative Work (CSCW), 18(5-6):559–580, 2009.

[22] S. S., S. Smith, S. Trudeau, M. Johnson, and P. A.
Information risk in financial institutions: Field study
and research roadmap. In D. Veit and et al., editors,
FinanceCom 2007, volume 4 of LNBIP.
Springer-Verlag, 2007.

[23] R. S. Sandhu and etal. Role-based access control
models. IEEE Computer, 29(2):38–47, 1996.

[24] E. Shaw, K. G. Ruby, and J. M. Post. The insider
threat to information systems: The psychology of the
dangerous insider. Security Awareness Bulletin, 2,
1998.

[25] G. Sindre and A. L. Opdahl. Eliciting security
requirements with misuse cases. REJ, 10(1):34–44,
2005.

[26] B. Staudt Lerner, S. Christov, A. Wise, and L. J.
Osterweil. Exception handling patterns for processes.
Technical Report UM-CS-2008-06, Dep. of Computer
Science, Univ. of Massachusetts, 2008.

[27] J. Tam, R. W. Reeder, and S. Schechter. IŠm allowing
what? In Proc. of Security and Human Behavior
(SHB’10), 2010. Available on the SHB web site.

[28] A. van Lamsweerde. Elaborating security requirements
by construction of intentional anti-models. In Proc. of
ICSE’04, pages 148–157. IEEE Computer Society
Press, 2004.

[29] R. Wash. Folk models of home computer security. In
Proc. of the ACM Symp. Usable Privacy and Security
(SOUPS’10), pages 1–16. ACM Press, 2010.

237

