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ABSTRACT
We argue that lightweight, language-based verification is
poised to enter mainstream industrial use, where it will have
a major impact on software quality and reliability. We ex-
plain how language-based approaches based on so-called de-
pendent types are already being adopted in functional pro-
gramming languages, and why such methods will be success-
ful for mainstream use, where traditional formal methods
have failed.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Applicative (functional)
languages; F.3.1 [Logics and Meanings of Programs]:
Mechanical verification; F.4.1 [Mathematical Logic]: Me-
chanical theorem proving

General Terms
Languages, Verification

Keywords
Language-Based Verification, Dependently Typed Program-
ming

1. A PARADIGM SHIFT IN THE MAKING
Generations have passed since the early days of verifica-

tion and formal methods (e.g., [9]), and one could be ex-
cused for thinking that the at-times acrimonious debate is
over: formal methods can provide strong guarantees about
the functional correctness of software, some might concede,
but they are too costly for mainstream use. If used at all,
it will only be for the most safety-critical (and small) com-
ponents of systems. Thus, they will have no real impact on
the never-ending crisis of software, which researchers have
grown so accustomed to that entire fields are premised on
its insolvability [1].

There are undeniable aspects of truth to this view. The
idea of even specifying programs like the Firefox web browser
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or Microsoft Office is daunting in the extreme. And full func-
tional verification of even quite modest versions of realistic
programs is still considered an almost incredibly difficult
tour de force, worthy of publication in the most selective
venues (e.g., [17, 13, 16]). Any company whose business de-
pended on carrying out full functional verification of large
pieces of industrial software would have a Hobbesian exis-
tence: not just short, but also nasty and brutish.

So why do we believe not only that there is hope for
mainstream industrial application of formal methods, but
that verification is poised to change the world? Because the
prototypical tour-de-force (TDF) examples of verification in
the literature are not representative of the much broader
class of verification activities, which are suitable for main-
stream adoption. We will explore this point by considering
an example of such a TDF verification effort, namely the
recent work on seL4, a fully verified operating-system ker-
nel [13]. This work received an SOSP best-paper award,
and is widely regarded as one of the most impressive formal
verifications ever reported in the literature. We will explain
why thinking of a TDF verification like that of seL4 as rep-
resentative involves two serious misunderstandings: what we
call the whole-system and the full-correctness fallacies. We
will then argue that solutions being developed in the pro-
gramming languages and computation logic communities –
in particular, language-based verification methods using de-
pendent types – are enabling a new approach to verification,
which is free from these problems. We conclude by con-
sidering the research challenges in software engineering and
programming languages that must be addressed in order to
realize the vision of mainstream verified software.

2. TOUR DE FORCE VERIFICATION
In [13], Klein et al. describe the full functional verifi-

cation of the seL4 OS kernel, written in 8700 lines of C
and 600 of assembly. They prove, in a staggering 200,000
lines of formal proof in the Isabelle theorem prover, that
the kernel refines an abstract, underspecified model of the
kernel.1 A critical component of the verification is an in-
termediate model of the seL4 operating system, written in
a simple fragment of the functional programming language
Haskell. This model, which is automatically translated to
a model in the Isabelle theorem prover, helps the authors

1We conjecture that the ratio of effort required per line of
proof versus line of mainstream imperative code is something
like 10 to 1, making this the equivalent of 2 million lines of
C code (of a kind which requires a very strong or highly
trained engineer to write).
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to bridge the gap between Isabelle’s logical language, and
the low-level C programming language.

This very impressive work would seem to confirm the ver-
ification skeptic’s position: verification, however valuable, is
just too costly to use for mainstream programming. But
let us consider this work more carefully. As is typical for a
TDF verification, in the seL4 verification, the authors prove
a very strong specification, in this case, the strongest cur-
rently imaginable: the kernel refines a high-level abstract
specification of what an OS kernel should do. So their work
shows that seL4 is as fully correct as we know how to specify
an OS kernel to be. And proving full correctness ultimately
requires reasoning about the entire 8700-line C program as
a whole. Certainly much of such a proof is concerned with
proving simpler properties of smaller units of the whole sys-
tem. But the statement of the final theorem refers to the
entire C-code kernel, and hence its proof must reason, in
however elegantly modularized a manner, about the system
as a whole.

3. LANGUAGE-BASED VERIFICATION
Our belief in the imminent industrial adoption of for-

mal methods is based on rejecting the idea that verification
requires whole-system reasoning and full correctness. In-
stead, like many authors in the programming-languages lit-
erature, we maintain that verification of specifications which
fall far short of full correctness, carried out without whole-
system reasoning, can provide tremendous benefits for soft-
ware quality and reliability. As we will explain, these lightweight
verification methods are conceptually much closer to exist-
ing programming methodology than other formal methods,
thus lowering the barrier to adoption in practice.

The methods we have in mind are language-based: they
avoid whole-system reasoning by extending the program-
ming language with annotations for specifications and proofs,
which are written as integral parts of the program text. No
theorem need ever be written about the system as a whole;
such global properties may be entailed by the weaker local
invariants that are machine-certified, but that entailment it-
self is not machine-certified. Language-based methods have
been developed in both the object-oriented and functional
programming communities. For examples of the former, see
the work on algorithmic verification of object-oriented pro-
grams (e.g., [4, 18]); and also approaches such as design by
contract, which emphasize the benefits of formal specifica-
tion (and focus less on formal verification of such specifi-
cations) [6, 21]. Here we will consider functional program-
ming with dependent types, the examplar of this approach
to lightweight verification which we know best. Recent ex-
amples of dependently typed functional languages (besides
several of our own) include Agda, Epigram, Ynot, and sev-
eral others [22, 23, 19]. Haskell also supports a limited
form of dependent types via so-called Generalized Algebraic
Datatypes (GADTs) [24].

4. TYPE CHECKING AS VERIFICATION
Formal verification is used every day by industrial pro-

grammers in the form of type checking. Strong static type
systems in industrial languages like Java and C#, and in
languages like Haskell and OCaml used mostly (but not
exclusively) in academia, are designed to rule out simple
kinds of program errors at compile-time, such as calling a

floating point operation on non-numeric arguments, or us-
ing an integer as a function pointer. In combination with
certain runtime checks (e.g., for in-bounds array accesses),
these type systems guarantee that at runtime, type-correct
programs will respect the abstractions expressed by the lan-
guage’s type system. Thus, programs that have passed the
type checker have been verified, albeit with respect to rel-
atively weak specifications (i.e., types). The basic idea of
the approach we advocate is to extend the language’s type
system, so that semantically richer abstractions can be de-
scribed and enforced at compile-time.

Let us consider a simple functional-programming exam-
ple. In languages like Haskell or OCaml, we may write a
function to append two lists, with the following type:

append : list ’a -> list ’a -> list ’a

This type says that the append function takes in two lists
storing elements of any type ’a, and returns a list of ele-
ments of type ’a. Static type checking guarantees that this
function, if called with lists whose elements are all of some
common type, will return such a list, if the function indeed
terminates normally (i.e., in finite time and without raising
exceptions).2

Dependently typed programming languages allow us to
describe richer abstractions using types. This is done with
type expressions that themselves contain data expressions.
A commonly used example is the type list ’a ’n of lists
with length. Here, the additional argument ’n to the list

type-constructor is a natural number specifying the length of
the list. So we have the following typing (assuming suitable
notation for string and list literals) for this example list:

[ "Santa" , "Fe" , "NM" ] : list string 3

The constructors for lists with length are:

nil : list ’a 0

cons : ’a -> list ’a ’n -> list ’a (’n+1)

The empty list (nil) naturally has length 0, and a list built
with cons will have length ’n + 1, if the sublist it is given
has length ’n. Finally, and more interestingly, it is possible
to write an append function with the following type:

append : list ’a ’n -> list ’a ’m -> list ’a (’n+’m)

This type expresses a non-trivial semantic property of append:
given a list of length ’n and a list of length ’m, the list re-
turned by append (assuming append terminates normally)
will have length ’n + ’m. This property is not one that can
be expressed or checked in traditional type systems for func-
tional programming languages, or in industrial languages.

There is, of course, a lot more to writing verified code
than just specifying a property like this one between the
lengths of the input and output lists. We will explain more
about the costs and challenges of dependently typed pro-
gramming, after we highlight its advantages over other ver-
ification methods.

2Static type checking does not enforce normal termination
in languages like Haskell and OCaml: programs can still
run forever or raise an exception. We note in passing
that (compile-time) verification of termination turns out to
play an important role in dependently typed languages (see,
e.g., [26]).
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4.1 Benefits of dependent types
The chief benefit of dependent types for verification is the

very small conceptual and engineering gap between (func-
tional) programming as it is usually done, and dependently
typed programming. For a programmer without special
training in logic or theorem proving, the intuitive mean-
ing of the type list ’a ’n should be, we believe, easy to
grasp, based on the meaning of list ’a. To understand and
program with lists with length, there is no need to learn a
separate specification language, special modeling techniques,
or a separate verification toolset, as there is with all other
formal methods we are aware of. The specification language
is just the type system of the programming language, and
the program verifier is just the type checker. The method
applies directly to source code, not a separate modeling lan-
guage. The power of language-based verification comes from
the tight integration between programming, specifying, and
verifying. Indeed, for dependently typed functional pro-
gramming, those three activities are supported through a
single language (i.e., the dependently typed programming
language) with a single tool (the compiler).

This small step from programming-as-usual to verified
programming is the chief reason we believe dependently typed
programming will be widely adopted in the near future, cer-
tainly within academia, but also trickling down to industry
(much as features like closures – a central idea from func-
tional programming – are being developed, as of this writing,
for version 1.7 of the Java language). Indeed, a form of de-
pendently typed programming is already available, thanks
to GADTs in recent versions of Haskell. Other benefits
of verified programming with dependent types, which we
cannot explore here for space reasons, include the ability to
type check highly generic programs (e.g., a single function
map that can map a given n-argument function over tuples of
corresponding elements from n given lists, collecting the list
of outputs); and also a more expressive specification lan-
guage than traditional logics, thanks to richer typing fea-
tures (e.g., type-level recursion).

4.2 Challenges
There is, of course, no free solution to the problem of ver-

ified programming. With dependent types, the cost man-
ifests itself when the type checker is unable to determine
automatically that two type expressions are equivalent. For
example, suppose we have obtained a list L of type list ’a

(’n+’m) by calling our append function. We can easily find
ourselves in a situation where we need the type checker to
confirm that L can also be viewed as having type list ’a

(’m+’n). While knowledge of properties like commutativity
of addition can be built into the compiler as a special case
(as done in Dependent ML [28]), we cannot do this for all
functions programmers might wish to include in type expres-
sions. Several solutions to this problem have been proposed
in the literature. With hybrid type-checking, equivalences
which cannot be checked statically are turned into runtime
checks by the compiler [10]. Another approach requires the
programmer himself to include proofs in his code, where
necessary to convince the type checker that types are equiv-
alent. For our example, this proof would be essentially a
proof of commutativity of addition.

So it might seem we have come full circle, back to the
onerous writing of proofs. Two things save our proposed ap-
proaches, however, from becoming just another form of TDF

verification. First, dependent types provide better supoprt
for incremental, pay-as-you-go verification than traditional
methods. Adding modest specificational information like the
length of lists will not usually impose a large proof burden.
This is because the only proofs required are ones about the
specificational information appearing in types (like the proof
that ’n+ ’m = ’m+ ’n). This does not require proving any-
thing about the surrounding program which is operating on
lists with length. So the whole-system problem is avoided:
we reason not about our code, but about the specificational
functions and data appearing inside type expressions for that
code. Certainly, if one wishes to prove something about
a complex specificational function, or about some function
from one’s implementation, then that is also possible in de-
pendently typed languages. But one must then be prepared
for the burden of proof, which can be very high. By re-
jecting the idea that the only verification worth the name
is full-correctness verification, dependently typed program-
ming opens up an exciting continuum, where richer speci-
fications lead one in a gradual way towards more complex
forms of reasoning. It is up the programmer to decide how
far to go. It may be that one can delineate certain pat-
terns of specification which ensure that all necessary proofs
can indeed be found fully automatically. If one goes beyond
these patterns, then proofs may be required. But that is not
a limitation: proofs are generally required at a certain point
for deep reasoning about correctness, under any approach.
Dependently typed languages provide a principled way to
integrate such proofs directly into programs, when needed.

5. PL AND SE
Programming Languages (PL) and Software Engineering

(SE) are two fields that, at least conceptually, need each
other. Yet their interactions are relatively few. We believe
that verified programming with dependent types opens up
a new avenue for possible interdisciplinary research between
the fields. This is largely due to the fact that with the
introduction of dependent types, traditional software engi-
neering processes will become even more critical for effective
programming, and even more technically challenging. For
example, consider restructuring and refactoring [20]. Type-
preserving restructuring will be, we conjecture, significantly
more involved for languages with dependent types, since the
types impose strong constraints on the space of legal pro-
grams into which a starting program might be restructured.
The very (presupposed) difficulty of this problem means that
it will be even more error-prone and difficult to carry out by
hand than for languages with traditional type systems, thus
increasing demand for automated restructuring tools.

Verified programming with dependent types also adds an-
other hard-to-predict variable to the problem of allocating
resources for large software projects. How should a project
decide how much of its budget to spend on lightweight veri-
fication, and when should and how should it spend it? Is it
better to start with dependent types expressing certain care-
fully chosen invariants, or is that the verificational equiva-
lent of optimizing without profiling (i.e., should we wait to
add this kind of rich type information until we have some
evidence that a certain subsystem of the code is difficult
to get right)? Questions like these may cover well-trodden
ground, but the incremental, pay-as-you-go nature of verifi-
cation with dependent types should, we conjecture, enlarge
the range of possible answers. How to balance the increased
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complexity of verified programming with the increased re-
wards of correctness appears to us, as outsiders to the field,
to be a challenging SE problem.

6. OTHER FORMAL METHODS
TDF verification techniques like theorem proving are able

to achieve full correctness of software, hardware, and other
systems, but at high cost in labor and training (see, e.g., [3,
14] for other examples). Weaker deductive techniques like
model checking are automatic, but generally work only for fi-
nite state systems, and can be computationally expensive [7].
Powerful automated theorem-provers like SAT/SMT solvers
are increasingly used as backends for model checking and
other automatic verification methods (see competition re-
ports like [5, 15] for results and further references). In-
deed, advanced static analysis techniques for (concurrent
and sequential) programming languages and compilers con-
tinue to rely on automated solving for different logics [27,
11]. Impressive progress has been made applying automatic-
verification techniques for static bug finding [29]. Abstract
interpretation and standard type checking provide relatively
efficient approaches to code validation, though for less gen-
eral problems [8, 25]. Testing and run-time monitoring re-
main mainstays of correct program development in prac-
tice [12, 2].

In contrast to these methods, language-based verification
seeks to provide incremental support for a full continuum of
correctness, from weak properties that are easily verified au-
tomatically, possibly using solvers like SAT or SMT solvers;
all the way to full correctness proofs requiring manual the-
orem proving. Dependently typed programming makes this
power available to the programmer by a natural extension

of the one language in which the programmer is guaranteed
to be fluent: the programming language itself. This opens
up the possibility that strong guarantees about software can
truly be obtained in an incremental manner, without the
steep learning curve and additional tool sets required by
other methods.

7. CONCLUSION
We have argued that language-based, lightweight verifica-

tion – embodied, in the functional programming paradigm,
by dependent types – will change the world. This is a pre-
diction, not a prescription. The problems of correct software
are so pressing, and the dependence of society on software is
so great, that given the right technical means, verified pro-
gramming will become a widespread reality in mainstream
industrial programming. The fallacies of whole-system veri-
fication and full functional correctness, which have restricted
verification largely to tour-de-force examples, need hold us
back no longer. Language-based verification, particularly
dependently typed programming, can enable the gradual
adoption of formal methods, based on increasingly seman-
tically rich types. The present ubiquity of type systems
will inexorably give rise to the future ubiquity of verified
programming. How we use the resulting expressive power
is likely to require a joint effort of both the Programming
Languages and Software Engineering fields.
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[18] C. Marché, C. Paulin-Mohring, and X. Urbain. The
Krakatoa Tool for Certification of JAVA/JAVACARD
Programs Annotated in JML. Journal of Logic and
Algebraic Programming, 58(1-2):89–106, 2004.

[19] C. McBride. Epigram: Practical programming with
dependent types. In V. Vene and T. Uustalu, editors,
Advanced Functional Programming, 5th International
School, AFP 2004, Tartu, Estonia, August 14-21,
2004, Revised Lectures, volume 3622 of Lecture Notes
in Computer Science, pages 130–170. Springer, 2004.

[20] T. Mens and T. Tourwe. A survey of software
refactoring. IEEE Transactions on software
engineering, 30(2):126–139, 2004.

[21] B. Meyer. Eiffel*: A language and environment for
software engineering. Journal of Systems and
Software, 8(3):199–246, 1988.

[22] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau,
and L. Birkedal. Ynot: Dependent Types for
Imperative Programs. In ICFP ’08: Proceeding of the
13th ACM SIGPLAN International Conference on
Functional Programming, pages 229–240. ACM, 2008.

[23] U. Norell. Towards a Practical Programming Language
Based on Dependent Type Theory. PhD thesis,
Chalmers University of Technology, 2007.

[24] S. Peyton Jones, D. Vytiniotis, S. Weirich, and
G. Washburn. Simple unification-based type inference
for GADTs. In J. Reppy and J. Lawall, editors,
International Conference on Functional Programming
(ICFP), pages 50–61, 2006.

[25] B. Pierce. Types and Programming Languages. The
MIT Press, 2002.

[26] A. Stump, Vilhelm Sjöberg, and S. Weirich.
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