
Latent Risks and Dangers in the State of Climate Model
Software Development

Shawn M. Freeman
NASA/Northrop Grumman

NASA GSFC Code 610 B28-R135B
Greenbelt, MD 20771

1-(301)-286-7066

shawn.m.freeman@nasa.gov

Thomas L. Clune
NASA

NASA GSFC Code 610 B28-R135B
Greenbelt, MD 20771

1-(301)-286-4635

thomas.l.clune@nasa.gov

Robert W. Burns III
NASA/Northrop Grumman

NASA GSFC Code 610 B28-R135B
Greenbelt, MD 20771

1-(301)-286-9513

robert.w.burns@nasa.gov

ABSTRACT
As the importance of climate modeling dramatically increases due
to concerns about global climate change, the quality of model
software will come under ever more intense scrutiny. Software
defects that alter model predictions could negatively impact
important climate policy decisions, and even if detected in time
could reduce policy makers’ confidence in the science. Effective
protection against software defense against errors requires the
anticipation of vulnerabilities for every facet of this important
work. Unfortunately, existing climate model implementations
and associated software engineering practices are inadequate to
defend properly against some concerns over defects and untested
parameter regimes. Organizations that wish to avoid scrutiny,
whether deserved or not, should ensure that appropriate software
engineering practices are established with all due haste. In this
paper we examine some of the inadequacies of existing software
development methodologies and suggest strategies for
fundamentally changing the established culture.

Categories and Subject Descriptors
D.2.0 Software Engineering, General

General Terms
Management, Measurement, Design, Economics, Reliability,
Human Factors, Standardization, Verification

Keywords
Climate model, climate change, software verification

1. INTRODUCTION
As with many large-scale, complex scientific applications, most
climate modeling efforts struggle with the consequences of
extremely limited investments in software engineering processes.
However, with the continuing rise of global climate change as a
major challenge for both public and fiscal policy, the technical
and political risks of inadequate software verification of climate
models are becoming a major liability. Multi-trillion dollar
decisions [5,6] about how to prevent and/or adapt to climate
change, are being made by local and national governments as well

as large financial institutions, such as the insurance industry.
These decisions are based in large part upon predictions derived
from climate models. Estimates of global economic commitments
at the recent Copenhagen Consensus on Climate are in the range
of $250 billion annually over 10 years [6]. Even national security
policy is beginning to be reformulated to reflect the risk of major
political and social unrest driven by consequences of global
climate change such as reduced availability of fresh water and/or
food in highly populated regions of the globe [3].

Although sophisticated, albeit non-automated, processes have
been developed and applied to successfully validate climate model
predictions against actual physical observations, relatively little
effort has been invested in directly validating various major model
subsystems on an individual basis. Software verification at any
finer scale is also rare. Model validation generally involves
detailed examination of output from an ensemble of long
executions and must be repeated each time a major change or
correction is made. Because of the extreme difficulty, systematic
model validation is generally attempted only after a lengthy (1-2
year) less-constrained development phase. Software defects are
typically identified via slow, careful, indirect deductions about
discrepancies in the model output. However, such processes are
labor intensive and completely inadequate to identify and locate
defects that are (a) below the observable threshold, (b) masked by
other defects, or (c) only significant for physical conditions that
exist in the future and for which there is therefore no
observational data to compare against.

Regardless of the actual defect rate in climate models, the lack of
formal software development and verification processes leaves
climate modeling teams and their predictions relatively
defenseless against accusations of unreliable results due to poor
quality control, particularly those that relate to future climate
regimes. In the broader context, these issues are mitigated by the
existence of independent models developed at competing
organizations providing scientifically comparable results.
However, host organizations, including government agencies,
which wish to avoid accusations of poor quality control or the
embarrassment of a public retraction of a scientific result, now
have a significant incentive to institute appropriate processes as a
proactive defense mechanism.

2. CLIMATE MODELING CULTURE AND
SOFTWARE DEVELOPMENT
Given the obvious value that stronger engineering processes could
bring to climate modeling organizations, it is important to
understand the major historical and cultural factors that have

Copyright 2010 Association for Computing Machinery. ACM
acknowledges that this contribution was authored or co-authored by an
employee, contractor or affiliate of the U.S. Government. As such, the
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes
only.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11...$10.00.

111

produced the current state of affairs. Generally these forces are
not unique to climate modeling, but rather apply to most scientific
models, which are sufficiently complex to require multiple
domain experts to implement and understand. Climate modeling is
only unique in that its implications have begun to take on
importance comparable to industries that have long recognized the
importance of robust processes such as transportation, medicine,
finance, and spaceflight. Indeed, until quite recently, climate
models were used solely for scientific research, with little or no
hint of their potential role in public policy. Unfortunately, the
limited software engineering practices, which emerged to support
basic research, within the modeling community are largely
insufficient for meeting the challenges of the newfound role.

Unlike most commercial software, development teams for
scientific applications are generally in the form of loose
collaborations with relatively weak central management of
priorities, coding standards, acceptance criteria and other aspects.
Additionally, scientific applications are typically developed by
professional scientists (domain experts) with little or no exposure
to advanced software practices. Despite these differences most
actual software issues are typical of those encountered in other
environments. Such issues include accumulated "code debt", poor
or unenforced processes, and lack of well-defined standards
and/or metrics to ensure software quality.

2.1 Code ownership, individualism, and ad-
hoc development
One anomalous feature of software in many scientific modeling
groups is that of code ownership. Unlike large or complex
applications developed within the commercial and open source
sectors where everyone on the project assumes the responsibility
of producing maintainable code, the modeling community is more
focused on individual goals and producing results. Scientific
domain expertise is far less interchangeable leading to a
“stovepipe” viewpoint of the model. Thus, a model development
team is often better described as a loose-knit community.
Common activities performed by professional software engineers
such as code refactoring and analysis are often not considered by
model developers, and if they are it is considered too
complex/time consuming, low or non-priority, or out of scope for
individual developers. Code optimization takes precedence over
design and elegance, which all too often leads to tangled, complex
code. In some cases research-level/prototype code is shoehorned
into an existing model by whatever means necessary in order to
get results faster. Such activities result in ever increasing amounts
of accumulated deficiencies, or code debt, that make future
changes more difficult. In addition, most scientists are not well
versed in or have been exposed to "clean code" concepts. Even if
a scientist attempts keeps long-term maintainability goals in mind
they may miss or inadvertently add deficiencies that would
otherwise have been caught and corrected by professional
software engineers. All of these things are in stark contrast to
commercial or open source development efforts where the code
must not only operate correctly, but also must meet quality criteria
and remain easy to work with.

With model developers focusing more on their own needs and
requirements with little, if any, consideration for software
engineering practices, a development environment is created
where there is no real central authority or consensus over how
model development should proceed. Without a central authority
or collaborative group's collective decisions to make and enforce

software development policy, scientific software development
often takes an ad-hoc/lone ranger approach that is detrimental to
the overall maintainability and stability of the code base. Even
when there is some semblance of a central authority, this authority
is often comprised of science experts, not software engineers.
While some standards may be put in place, the disciplines of
engineering are often overlooked or ignored in favor of just
getting things to work.

The individual-versus-group mentality also creates multiple single
points failures with respect knowledge about the code. Lack of
documentation, standards, or an authority to enforce those
standards leads to cryptic software where only the original
developer(s) may fully understand the programming logic, and
even they may not remember essential details when another
programmer needs to change or use the code. If the developer
leaves or is no longer available, a new developer may be forced to
waste a considerable amount of time and effort attempting to
reverse engineer the logic, or worse, rewriting the entire piece of
code.

Not only is ad-hoc development detrimental to the overall
maintainability and stability of the model, but it can also introduce
issues that are external to the main program. With many scientific
models, there is so much complexity introduced by the ad-hoc
process that extensive configuration files and scripts are required
just to build the program, let alone actually run it. Porting such
models to new systems (or even just updating libraries and
compilers) can sometimes take weeks to months due to this
complexity. Often, extensive access to domain experts is required
in order to configure and run the applications correctly. This has
the effect of throttling productivity, while creating a drain on
resources that could otherwise be better put to use.

2.2 Modelers and engineering apathy
Another aspect that is fairly unique to the modeling community is
that it lacks a "user base" in the traditional software sense. In
commercial or open source software development, there is usually
an external driving force that encourages, if not demands,
software quality. Such applications would have few users if the
applications were too complex to use or had other faults. Product
releases would also be fewer and far between if the existing code
base could not be easily extended, re-used, or if bringing on new
developers took a large investment of time. Such applications and
projects would likely fail and/or be abandoned in favor of better-
engineered alternatives. This is in sharp contrast to the modeling
community, where fragile, complex, and difficult to use software
has become the status quo. The user base is the model
developers/scientists themselves. This user community has
become complacent and just accepts that models are delicate and
difficult to work with. Similarly the developer community accepts
that the code base is equally delicate and difficult to modify. This
apathy creates and fosters an environment that encourages the
modeling community to be it's own worst enemy when it comes to
improving their software and associated processes.

2.3 Code confidence
One key area where model development does not differ from
other software development projects is the need for methods and
measures sufficient to thoroughly test, validate, and quantify the
quality of the code. Unfortunately, this is an area where models
and model developers fall short. The typical procedure for testing
a model is adding new code, compiling the model, and then

112

performing a lengthy simulation with the new executable to either
compare against available data or previous model results. The
determination of whether or not the code works is based on the
judgment of the model developer/domain expert. These criteria
are often not documented, and even less likely to have automated
test cases. This is a very poor process for ensuring that complex
software is operating correctly. It is difficult to determine whether
or not any given aspect of the model behaves, as it should in
response to the new code. Software faults can also be hidden by
the current run parameters or does not come into play. Other than
floating point exceptions, these software faults can be extremely
subtle and may not manifest themselves until a specific set of
conditions are met.

Whereas these concerns are worrisome enough for the purposes of
scientific research, for models that are employed for critical
decision-making, this level of uncertainty about quality of the
code is simply unacceptable. The idea that models and their
results are just for researchers is no longer valid, especially with
politicized topics such as climate change. Similar to financial
models where million or billion dollar decisions leave little room
for error, models used in formulating policy and critical decision-
making must be held to an equally high standard of software
quality and reliability. However, unlike financial models, science
models often lack the rigorous testing and quality assurance that
financial models go through before they are employed in activities
such as automatic stock and futures trading.

2.4 Inertia, resistance, and reluctance to
change
Last but not least, the model development community harbors an
unwillingness to change and what appears to be a general distrust
of the software engineering discipline. A common view among
model developers is that the additional time spent doing actual
software engineering versus just programming adds unnecessary
overhead that takes away from the "real" work, i.e. scientific
research. Another common (and incorrect) view is that the more
"modern" programming paradigms (like object-oriented
programming) that encourage and/or enforce better support for
common infrastructure that is orthogonal to the usual
decomposition of responsibilities always introduce significant
overhead or complexity in the code, despite numerous research
studies that indicate otherwise [1,2]. The prevailing mentality is
that current methods and code are "good enough" for the research
the modelers wish to perform, and therefore any additional
activities just detracts from doing the science. To be fair, many
modelers embrace these concepts, but rarely to the point of
making significant changes to the investment of resources. Given
that a modeling group can often hire 2 postdoctoral researchers or
several graduate students for the cost of a single qualified
software engineer [4], this viewpoint is not altogether unfounded.
The old adage about leading a horse to water remains alive and
well in the modeling community.

Unfortunately, there is an incredible amount of inertia within the
modeling community in regards to adopting and using better
software engineering practices. Even with well-documented
advantages from both the commercial sector and open source
projects of using better software practices, there is insufficient
incentive to effect change. Legacy code bases would require
funding (for some models, a significant amount funding) to
retroactively apply such practices and paradigms, which science
groups currently cannot or will not justify. In the meantime, other

than the self-inflicted losses of productivity caused by code
quality, there is no immediate "penalty" to continue with their
current methods of operation. Public scrutiny may eventually
generate enough concern to effect meaningful change, but for a lot
of models that may be a ways off or never materialize.

Put simply, the current methods of model software development
are not sustainable. The lack of coherence among the model
development communities, apathy towards the development
process, and lack of software engineering practices has been and
continues to be the source of many issues that continue to plague
modeling development. The fact that model developers are often
domain experts and not software engineers only contributes to the
problems by fostering a self-centered or research-centered
approach to development with little concern for the quality of the
overall software. These issues have a strong negative impact on
productivity, maintainability, and quality of code which are not
only costly to the model development community, but could lead
to public/political costs and consequences as well. The longer
these issues remain unaddressed or ignored, the worse the
problems will become, and the more time and resources it will
take to rectify the problems.

3. STRATEGIES FOR ENACTING
CULTURAL CHANGE
Effecting significant improvement in development processes used
in climate modeling in the presence of the entrenched culture
described above will require considerable effort on multiple
fronts. First and foremost, short-term resource incentives are
required to offset the disruption and encourage constructive
responses. Further, external expertise must be brought in and
provided a certain level of authority to implement change while
educating and training other developers. And finally, long-term
institutional standards and metrics must be established to ensure
that processes and quality are maintained once the initial resource
investments have been consumed. Hopefully in that era, the long-
term benefits will be more apparent to the community and overt
incentives will be less necessary.

Without the augmented funding to incentivize the necessary
improvements in software engineering activities, it will be
difficult to enact change. Not many modeling groups will
willingly divert resources to hire non-scientists because it will be
a perceived reduction in the amount of science or model
development that can be attained. Additionally, forcefully
diverting those resources from existing funds may well result in
resentment toward the new software activities.

A better approach would be to provide augmented funding and tie
it to well-defined criteria. This ensures that they are used strictly
for establishing and applying software engineering practices to the
project without stirring deep negativity. With funding in place,
establishing a close, collaborative relationship between
science/model developers and software engineers will be key for
developing standards, processes, and improving code quality.
Once processes and standards have been developed and agreed
upon, these can be applied to existing code as well as new
development.

The most effective facilitator for breaking down the cultural and
mental barriers model developers have in regards to software
engineering is the practice of pair programming. Pair
programming encourages both the engineer and the scientist work
together on the code simultaneously. This allows the engineer

113

gains insight into the code and what the scientist is trying to
accomplish, and the scientist gains insight into software
engineering. The model developer experiences how software
engineering works in practice. This close interaction will allow
software engineers to help model developers formulate standards
and processes that are efficient and effective in their environment,
as well as changing model developer attitudes towards treating
software as a goal rather than just a tool.

Once the modeling community is more heavily involved with
software engineering, practices such as unit testing, test-driven
development (TDD), and continuous integration testing should
receive more focus. These practices ensure better code by having
robust test suites for most aspects of the code. More importantly,
these practices provide essential metrics for gauging the health of
the code through test coverage and test results. Unfortunately, the
cost of retroactively adding testing to the existing (and large)
legacy code bases may be prohibitive. However, certain critical
areas of the legacy code can be covered with testing and testing
practices can easily be used with new development or refactoring
activities.

Regardless of the particular practices that are found to be effective
for a given development team, parent institutions have a
responsibility to implement and enforce appropriate standards,
requirements, and audits to ensure that processes do not regress to
an unacceptable level over the long term. Old habits will tend to
make an appearance until new ones have taken over. Software
policies need not be particularly burdensome, especially if the
benefits become more evident to the individual researchers.

4. CONCLUSIONS
Climate modeling has become an extremely important,
multinational effort with truly sobering implications. Both the
raw significance of the predictions as well as the associated
political sensitivities imply that climate modelers have a
responsibility to ensure that appropriate measures have been used

to establish the reliability of the forecasts. Although some such
measures are well established (e.g. validation against data and
multi-model comparisons), the general lack of robust software
engineering practices represents a growing risk that is likely to be
unacceptable to some organizations. Improvements can be made,
but will require substantial resources and persistent pressure for
cultural change over the course of several years before sufficient
protection will be afforded against such concerns. Fortuitously,
such investments should also improve productivity of these long-
lived modeling efforts, offsetting the near term costs.

5. REFERENCES
[1] Abrahams, D., et al. “Technical Report on C++

Performance”, ISO/IEC PDTR 18015. 11 August 2003.

[2] Bhakthavatsalam, Sumithra. "Measuring the Perceived
Overhead Imposed by Object-Oriented Programming in a
Real-time Embedded System.” Virginia Polytechnic Institute
and State University thesis. 16 May 2003.

[3] “National Security Strategy” The White House, Washington.
May 2010.
http://www.whitehouse.gov/sites/default/files/rss_viewer/nati
onal_security_strategy.pdf

[4] PayScale, Inc. “The PayScale Report”.
http://www.payscale.com.

[5] Pearce, Fred. "Top economist counts future cost of climate
change." NewScientist. 30 October 2006.
http://www.newscientist.com/article/dn10405-top-economist-
counts-future-cost-of-climate-change.html.

[6] Roson, R., “Modeling Climate Change Mitigation Options: A
Review of Tol’s Contribution to Copenhagen Consensus”,

http://ssrn.com/abstract=1514298.

114

