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ABSTRACT 
As the importance of climate modeling dramatically increases due 
to concerns about global climate change, the quality of model 
software will come under ever more intense scrutiny.  Software 
defects that alter model predictions could negatively impact 
important climate policy decisions, and even if detected in time 
could reduce policy makers’ confidence in the science.  Effective 
protection against software defense against errors requires the 
anticipation of vulnerabilities for every facet of this important 
work.   Unfortunately, existing climate model implementations 
and associated software engineering practices are inadequate to 
defend properly against some concerns over defects and untested 
parameter regimes.   Organizations that wish to avoid scrutiny, 
whether deserved or not, should ensure that appropriate software 
engineering practices are established with all due haste.  In this 
paper we examine some of the inadequacies of existing software 
development methodologies and suggest strategies for 
fundamentally changing the established culture. 
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1. INTRODUCTION 
As with many large-scale, complex scientific applications, most 
climate modeling efforts struggle with the consequences of 
extremely limited investments in software engineering processes. 
However, with the continuing rise of global climate change as a 
major challenge for both public and fiscal policy, the technical 
and political risks of inadequate software verification of climate 
models are becoming a major liability. Multi-trillion dollar 
decisions [5,6] about how to prevent and/or adapt to climate 
change, are being made by local and national governments as well 

as large financial institutions, such as the insurance industry.  
These decisions are based in large part upon predictions derived 
from climate models.  Estimates of global economic commitments 
at the recent Copenhagen Consensus on Climate are in the range 
of $250 billion annually over 10 years [6].  Even national security 
policy is beginning to be reformulated to reflect the risk of major 
political and social unrest driven by consequences of global 
climate change such as reduced availability of fresh water and/or 
food in highly populated regions of the globe [3].  

Although sophisticated, albeit non-automated, processes have 
been developed and applied to successfully validate climate model 
predictions against actual physical observations, relatively little 
effort has been invested in directly validating various major model 
subsystems on an individual basis.  Software verification at any 
finer scale is also rare. Model validation generally involves 
detailed examination of output from an ensemble of long 
executions and must be repeated each time a major change or 
correction is made.  Because of the extreme difficulty, systematic 
model validation is generally attempted only after a lengthy (1-2 
year) less-constrained development phase.   Software defects are 
typically identified via slow, careful, indirect deductions about 
discrepancies in the model output.  However, such processes are 
labor intensive and completely inadequate to identify and locate 
defects that are (a) below the observable threshold, (b) masked by 
other defects, or (c) only significant for physical conditions that 
exist in the future and for which there is therefore no 
observational data to compare against. 

Regardless of the actual defect rate in climate models, the lack of 
formal software development and verification processes leaves 
climate modeling teams and their predictions relatively 
defenseless against accusations of unreliable results due to poor 
quality control, particularly those that relate to future climate 
regimes.  In the broader context, these issues are mitigated by the 
existence of independent models developed at competing 
organizations providing scientifically comparable results. 
However, host organizations, including government agencies, 
which wish to avoid accusations of poor quality control or the 
embarrassment of a public retraction of a scientific result, now 
have a significant incentive to institute appropriate processes as a 
proactive defense mechanism. 

2. CLIMATE MODELING CULTURE AND 
SOFTWARE DEVELOPMENT 
Given the obvious value that stronger engineering processes could 
bring to climate modeling organizations, it is important to 
understand the major historical and cultural factors that have 

 

Copyright 2010 Association for Computing Machinery. ACM 
acknowledges that this contribution was authored or co-authored by an 
employee, contractor or affiliate of the U.S. Government. As such, the 
Government retains a nonexclusive, royalty-free right to publish or 
reproduce this article, or to allow others to do so, for Government purposes 
only. 
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA. 
Copyright 2010 ACM  978-1-4503-0427-6/10/11...$10.00. 
 

111



produced the current state of affairs. Generally these forces are 
not unique to climate modeling, but rather apply to most scientific 
models, which are sufficiently complex to require multiple 
domain experts to implement and understand. Climate modeling is 
only unique in that its implications have begun to take on 
importance comparable to industries that have long recognized the 
importance of robust processes such as transportation, medicine, 
finance, and spaceflight.  Indeed, until quite recently, climate 
models were used solely for scientific research, with little or no 
hint of their potential role in public policy.  Unfortunately, the 
limited software engineering practices, which emerged to support 
basic research, within the modeling community are largely 
insufficient for meeting the challenges of the newfound role. 

Unlike most commercial software, development teams for 
scientific applications are generally in the form of loose 
collaborations with relatively weak central management of 
priorities, coding standards, acceptance criteria and other aspects. 
Additionally, scientific applications are typically developed by 
professional scientists (domain experts) with little or no exposure 
to advanced software practices.  Despite these differences most 
actual software issues are typical of those encountered in other 
environments.  Such issues include accumulated "code debt", poor 
or unenforced processes, and lack of well-defined standards 
and/or metrics to ensure software quality. 

2.1 Code ownership, individualism, and ad-
hoc development 
One anomalous feature of software in many scientific modeling 
groups is that of code ownership.  Unlike large or complex 
applications developed within the commercial and open source 
sectors where everyone on the project assumes the responsibility 
of producing maintainable code, the modeling community is more 
focused on individual goals and producing results.  Scientific 
domain expertise is far less interchangeable leading to a 
“stovepipe” viewpoint of the model.  Thus, a model development 
team is often better described as a loose-knit community. 
Common activities performed by professional software engineers 
such as code refactoring and analysis are often not considered by 
model developers, and if they are it is considered too 
complex/time consuming, low or non-priority, or out of scope for 
individual developers. Code optimization takes precedence over 
design and elegance, which all too often leads to tangled, complex 
code.  In some cases research-level/prototype code is shoehorned 
into an existing model by whatever means necessary in order to 
get results faster. Such activities result in ever increasing amounts 
of accumulated deficiencies, or code debt, that make future 
changes more difficult.  In addition, most scientists are not well 
versed in or have been exposed to "clean code" concepts.  Even if 
a scientist attempts keeps long-term maintainability goals in mind 
they may miss or inadvertently add deficiencies that would 
otherwise have been caught and corrected by professional 
software engineers.  All of these things are in stark contrast to 
commercial or open source development efforts where the code 
must not only operate correctly, but also must meet quality criteria 
and remain easy to work with. 

With model developers focusing more on their own needs and 
requirements with little, if any, consideration for software 
engineering practices, a development environment is created 
where there is no real central authority or consensus over how 
model development should proceed.  Without a central authority 
or collaborative group's collective decisions to make and enforce 

software development policy, scientific software development 
often takes an ad-hoc/lone ranger approach that is detrimental to 
the overall maintainability and stability of the code base. Even 
when there is some semblance of a central authority, this authority 
is often comprised of science experts, not software engineers. 
While some standards may be put in place, the disciplines of 
engineering are often overlooked or ignored in favor of just 
getting things to work. 

The individual-versus-group mentality also creates multiple single 
points failures with respect knowledge about the code.  Lack of 
documentation, standards, or an authority to enforce those 
standards leads to cryptic software where only the original 
developer(s) may fully understand the programming logic, and 
even they may not remember essential details when another 
programmer needs to change or use the code.  If the developer 
leaves or is no longer available, a new developer may be forced to 
waste a considerable amount of time and effort attempting to 
reverse engineer the logic, or worse, rewriting the entire piece of 
code. 

Not only is ad-hoc development detrimental to the overall 
maintainability and stability of the model, but it can also introduce 
issues that are external to the main program. With many scientific 
models, there is so much complexity introduced by the ad-hoc 
process that extensive configuration files and scripts are required 
just to build the program, let alone actually run it. Porting such 
models to new systems (or even just updating libraries and 
compilers) can sometimes take weeks to months due to this 
complexity.  Often, extensive access to domain experts is required 
in order to configure and run the applications correctly. This has 
the effect of throttling productivity, while creating a drain on 
resources that could otherwise be better put to use.  

2.2 Modelers and engineering apathy 
Another aspect that is fairly unique to the modeling community is 
that it lacks a "user base" in the traditional software sense. In 
commercial or open source software development, there is usually 
an external driving force that encourages, if not demands, 
software quality. Such applications would have few users if the 
applications were too complex to use or had other faults.  Product 
releases would also be fewer and far between if the existing code 
base could not be easily extended, re-used, or if bringing on new 
developers took a large investment of time.  Such applications and 
projects would likely fail and/or be abandoned in favor of better-
engineered alternatives.  This is in sharp contrast to the modeling 
community, where fragile, complex, and difficult to use software 
has become the status quo. The user base is the model 
developers/scientists themselves. This user community has 
become complacent and just accepts that models are delicate and 
difficult to work with. Similarly the developer community accepts 
that the code base is equally delicate and difficult to modify. This 
apathy creates and fosters an environment that encourages the 
modeling community to be it's own worst enemy when it comes to 
improving their software and associated processes. 

2.3 Code confidence 
One key area where model development does not differ from 
other software development projects is the need for methods and 
measures sufficient to thoroughly test, validate, and quantify the 
quality of the code. Unfortunately, this is an area where models 
and model developers fall short. The typical procedure for testing 
a model is adding new code, compiling the model, and then 
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performing a lengthy simulation with the new executable to either 
compare against available data or previous model results.  The 
determination of whether or not the code works is based on the 
judgment of the model developer/domain expert.  These criteria 
are often not documented, and even less likely to have automated 
test cases.  This is a very poor process for ensuring that complex 
software is operating correctly. It is difficult to determine whether 
or not any given aspect of the model behaves, as it should in 
response to the new code.  Software faults can also be hidden by 
the current run parameters or does not come into play. Other than 
floating point exceptions, these software faults can be extremely 
subtle and may not manifest themselves until a specific set of 
conditions are met.  

Whereas these concerns are worrisome enough for the purposes of 
scientific research, for models that are employed for critical 
decision-making, this level of uncertainty about quality of the 
code is simply unacceptable. The idea that models and their 
results are just for researchers is no longer valid, especially with 
politicized topics such as climate change. Similar to financial 
models where million or billion dollar decisions leave little room 
for error, models used in formulating policy and critical decision-
making must be held to an equally high standard of software 
quality and reliability. However, unlike financial models, science 
models often lack the rigorous testing and quality assurance that 
financial models go through before they are employed in activities 
such as automatic stock and futures trading.  

2.4 Inertia, resistance, and reluctance to 
change 
Last but not least, the model development community harbors an 
unwillingness to change and what appears to be a general distrust 
of the software engineering discipline. A common view among 
model developers is that the additional time spent doing actual 
software engineering versus just programming adds unnecessary 
overhead that takes away from the "real" work, i.e. scientific 
research. Another common (and incorrect) view is that the more 
"modern" programming paradigms (like object-oriented 
programming) that encourage and/or enforce better support for 
common infrastructure that is orthogonal to the usual 
decomposition of responsibilities always introduce significant 
overhead or complexity in the code, despite numerous research 
studies that indicate otherwise [1,2].  The prevailing mentality is 
that current methods and code are "good enough" for the research 
the modelers wish to perform, and therefore any additional 
activities just detracts from doing the science. To be fair, many 
modelers embrace these concepts, but rarely to the point of 
making significant changes to the investment of resources.  Given 
that a modeling group can often hire 2 postdoctoral researchers or 
several graduate students for the cost of a single qualified 
software engineer [4], this viewpoint is not altogether unfounded.  
The old adage about leading a horse to water remains alive and 
well in the modeling community.  

Unfortunately, there is an incredible amount of inertia within the 
modeling community in regards to adopting and using better 
software engineering practices. Even with well-documented 
advantages from both the commercial sector and open source 
projects of using better software practices, there is insufficient 
incentive to effect change. Legacy code bases would require 
funding (for some models, a significant amount funding) to 
retroactively apply such practices and paradigms, which science 
groups currently cannot or will not justify. In the meantime, other 

than the self-inflicted losses of productivity caused by code 
quality, there is no immediate "penalty" to continue with their 
current methods of operation. Public scrutiny may eventually 
generate enough concern to effect meaningful change, but for a lot 
of models that may be a ways off or never materialize.  

Put simply, the current methods of model software development 
are not sustainable. The lack of coherence among the model 
development communities, apathy towards the development 
process, and lack of software engineering practices has been and 
continues to be the source of many issues that continue to plague 
modeling development. The fact that model developers are often 
domain experts and not software engineers only contributes to the 
problems by fostering a self-centered or research-centered 
approach to development with little concern for the quality of the 
overall software. These issues have a strong negative impact on 
productivity, maintainability, and quality of code which are not 
only costly to the model development community, but could lead 
to public/political costs and consequences as well. The longer 
these issues remain unaddressed or ignored, the worse the 
problems will become, and the more time and resources it will 
take to rectify the problems. 

3. STRATEGIES FOR ENACTING 
CULTURAL CHANGE 
Effecting significant improvement in development processes used 
in climate modeling in the presence of the entrenched culture 
described above will require considerable effort on multiple 
fronts. First and foremost, short-term resource incentives are 
required to offset the disruption and encourage constructive 
responses.  Further, external expertise must be brought in and 
provided a certain level of authority to implement change while 
educating and training other developers.  And finally, long-term 
institutional standards and metrics must be established to ensure 
that processes and quality are maintained once the initial resource 
investments have been consumed.  Hopefully in that era, the long-
term benefits will be more apparent to the community and overt 
incentives will be less necessary. 

Without the augmented funding to incentivize the necessary 
improvements in software engineering activities, it will be 
difficult to enact change. Not many modeling groups will 
willingly divert resources to hire non-scientists because it will be 
a perceived reduction in the amount of science or model 
development that can be attained.  Additionally, forcefully 
diverting those resources from existing funds may well result in 
resentment toward the new software activities. 

A better approach would be to provide augmented funding and tie 
it to well-defined criteria.  This ensures that they are used strictly 
for establishing and applying software engineering practices to the 
project without stirring deep negativity.  With funding in place, 
establishing a close, collaborative relationship between 
science/model developers and software engineers will be key for 
developing standards, processes, and improving code quality. 
Once processes and standards have been developed and agreed 
upon, these can be applied to existing code as well as new 
development.  

The most effective facilitator for breaking down the cultural and 
mental barriers model developers have in regards to software 
engineering is the practice of pair programming. Pair 
programming encourages both the engineer and the scientist work 
together on the code simultaneously. This allows the engineer 
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gains insight into the code and what the scientist is trying to 
accomplish, and the scientist gains insight into software 
engineering. The model developer experiences how software 
engineering works in practice. This close interaction will allow 
software engineers to help model developers formulate standards 
and processes that are efficient and effective in their environment, 
as well as changing model developer attitudes towards treating 
software as a goal rather than just a tool.  

Once the modeling community is more heavily involved with 
software engineering, practices such as unit testing, test-driven 
development (TDD), and continuous integration testing should 
receive more focus. These practices ensure better code by having 
robust test suites for most aspects of the code. More importantly, 
these practices provide essential metrics for gauging the health of 
the code through test coverage and test results. Unfortunately, the 
cost of retroactively adding testing to the existing (and large) 
legacy code bases may be prohibitive.  However, certain critical 
areas of the legacy code can be covered with testing and testing 
practices can easily be used with new development or refactoring 
activities. 

Regardless of the particular practices that are found to be effective 
for a given development team, parent institutions have a 
responsibility to implement and enforce appropriate standards, 
requirements, and audits to ensure that processes do not regress to 
an unacceptable level over the long term.  Old habits will tend to 
make an appearance until new ones have taken over.  Software 
policies need not be particularly burdensome, especially if the 
benefits become more evident to the individual researchers. 

4. CONCLUSIONS 
Climate modeling has become an extremely important, 
multinational effort with truly sobering implications.    Both the 
raw significance of the predictions as well as the associated 
political sensitivities imply that climate modelers have a 
responsibility to ensure that appropriate measures have been used 

to establish the reliability of the forecasts.  Although some such 
measures are well established (e.g. validation against data and 
multi-model comparisons), the general lack of robust software 
engineering practices represents a growing risk that is likely to be 
unacceptable to some organizations.  Improvements can be made, 
but will require substantial resources and persistent pressure for 
cultural change over the course of several years before sufficient 
protection will be afforded against such concerns.  Fortuitously, 
such investments should also improve productivity of these long-
lived modeling efforts, offsetting the near term costs. 
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