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Abstract
Reliance on skilled developers reduces the return on investment
for important software engineering tasks such as establishing pro-
gram correctness. This position paper introduces adaptive semi-
automated (ASA) tools as a means to enable less-skilled workers
to perform aspects of software engineering tasks. In an ASA tool,
a task is decomposed and the computationally difficult subtasks are
performed by less-skilled workers using an adaptive user interface,
reducing or eliminating the skilled developer’s effort.

We describe strategies for decomposing a software engineering
task and propose design principles to maximize the cost effective-
ness of ASA tools in the presence of imperfect decomposition.
Though the approach can be applied to many different types of
tasks, this paper focuses on and provides examples for the software
correctness tasks of test generation, program verification, and pro-
gram synthesis. Additionally, we address the auxiliary challenges
of latency, intellectual property risk, and worker error.

Categories and Subject Descriptors
K.6.0 [Management of Computing and information systems]:
General—Economics; D.2.5 [Software Engineering]: Testing and
Debugging—Testing tools; D.2.4 [Software Engineering]: Soft-
ware/Program Verification

General Terms
Economics

Keywords
adaptive semi-automation, less-skilled, test generation, program syn-
thesis, program verification

1. Introduction
Software bugs cost the United States economy an estimated $59.5

billion annually; it is estimated that improved testing practices could
reduce this cost by $22.5 billion [13]. The high cost of software
bugs does not imply a lack of attention to testing, however. Beizer
found that 50% of the labor when developing software is spent on
testing [4].

The labor-intensive nature of testing can be explained in large
part by the fact that, despite the existence of software engineering
tools, skilled developers must still manually write test cases, write
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program annotations, refactor software, etc. Since software devel-
opers in the United States earn a mean annual salary of $90,170
[17], the expected return on investment (ROI) for exhaustively per-
forming tasks like test generation is often unattractive.

This paper presents adaptive semi-automation (ASA) as a strat-
egy for reducing the cost of software engineering by shifting the
labor burden to less-skilled, less-expensive, workers. Depending
on the context, a less-skilled worker might have only a bachelor’s
degree or might have never attended college. ASA tools are distinct
from traditional software engineering tools in that they have both
semi-automated and adaptive aspects.

Semi-automation, the mixture of computation and effort by at
least one non-primary user, is well-motivated by research into uti-
lizing human knowledge to solve computationally difficult prob-
lems. Examples include reCAPTCHA for character recognition
[19], the ESP Game for image labeling [18], and FoldIt for protein
folding [6]. Paid services, such as Amazon’s Mechanical Turk [2],
have also emerged to provide a marketplace for people to perform
small human intelligence tasks (HITs) at competitive rates.

In the software engineering domain, however, it may be impos-
sible to decompose the tasks so cleanly as to decisively leverage
human strengths. Therefore, the interaction with ASA tools is nec-
essarily adaptive — the user input and tool feedback (outputs) are
serially dependent — to enable less-skilled workers to efficiently
perform subtasks. Section 3 establishes what we see as the funda-
mental design principles guiding the development of ASA tools.

Ultimately, the major challenge is how to decompose high-level
tasks in order to make the best use of less-skilled labor. For exam-
ple, an ASA test generator might use less-skilled workers to guide
procedure call ordering. Whether the tool should also solicit inputs
from the workers is ultimately a question of economics. In Section
2, we describe the microeconomic principles of opportunity cost
and comparative advantage that serve as a basis for answering this
question. Later, Section 3.1 prescribes specific research questions
that can be used to analyze the economics of ASA tools.

The use of ASA tools also introduces auxiliary challenges such
as latency, intellectual property protection, and user error. We ad-
dress these challenges in Section 5. Determining the risk these
challenges pose under the aforementioned economic framework al-
lows tool designers and researchers to determine the financial fea-
sibility of their tools and make a strong business case for their tool,
if one exists.

The ASA approach, together with the low cost of on-demand
computing and globalized labor markets, has the potential to in-
crease the return on investment for software engineering tasks.
Therefore, ASA tools have the potential to change the economics
of software engineering, whether the goal is improved software re-
liability, usability, or correctness.
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Figure 1: Curve (a) is a hypothetical production-possibility frontier (PPF)
given fixed resources. Each axis is the present value of the associated cash
flow measured in dollars (e.g., expected sales minus bug fix cost). The total
value of an allocation at a particular level of correctness and features is the
sum of the value of the established correctness (e.g., future bug fix costs
avoided) and the value of the features. Maximum value is achieved where
the slope is −1, as marked. Frontiers (b) and (c) show how introducing a
new correctness tool changes the PPF. In (b), the developers use the tool. In
(c), management re-balances the workforce, reducing the number of skilled
workers and hiring less-skilled, less expensive, workers to use the new tool.

2. Opportunity Cost and Comparative
Advantage

Opportunity cost is the cost associated with a limited resource,
such as time. For example, if a company’s best software developer
is assigned to write unit tests, she is unable to write new high-value
features. Because not all individuals are equally proficient in all
endeavors, opportunity costs differ across individuals. An individ-
ual who has the lowest opportunity cost for a particular task has a
comparative advantage. It is important to note that having a com-
parative advantage does not imply that the individual is the most
proficient at the task (has an absolute advantage). For example, a
summer intern may provide a comparative advantage in testing over
a senior software developer.

Aggregate opportunity costs can be expressed as a production-
possibility frontier (PPF). Figure 1, curve (a), shows a hypothetical
production-possibility frontier for a project where a fixed set of re-
sources — time, money, employees, etc. — can either be used for
feature development or to establish correctness. The total value of
an allocation is the sum of the dollar value of the established cor-
rectness (e.g., future bug fix costs avoided) and the value of the
features.

Though Figure 1 grossly simplifies the trade-offs when manag-
ing a project, it captures the fundamental notion of the marginal rate
of transformation (MRT) between correctness and feature develop-
ment. At any given point on the frontier, the MRT is the opportunity
cost associated with choosing an extra unit of features over an ex-
tra unit of correctness and vice versa. Assuming risk-neutrality —
that the firm doesn’t take into account the probabilities of the cash
flows, only their expected values — the firm will choose a combi-
nation such that the MRT = −1 (the enlarged points in Figure 1),
where the ROI trade-off is equal for features and correctness. In the
figure, the lines with slope −1 are indifference lines (also known as
indifference curves): the expected revenue is equivalent anywhere
on the curve. An allocation on one indifference curve is preferable
to an allocation on an indifference curve that is closer to the origin.

Technological innovations shift the production-possibility fron-
tier outward because more value can be created. When a new
testing tool is introduced, for example, the value of establishing
software correctness increases relative to developing new features,
shifting the curve outward as in Figure 1, curve (b), and making
a higher total value achievable. For technologies that encourage a
shift to non-developer employees, the increase in absolute testing
and verification ability is accompanied by a decrease in the ability
to develop features, as in Figure 1, curve (c).

Figure 2: The basic architecture of traditional and adaptive semi-automated
(ASA) tools. The square black boxes represent tool modules and the stick
figures represent less-skilled workers. ASA tools use less-skilled workers
to perform subtasks, reducing or eliminating the Einstein’s interaction with
the tool.

By increasing the ability for non-developers to establish cor-
rectness, adaptive semi-automated tools will cause a shift like that
shown in Figure 1, curve (c). The idea is to increase the dollar value
of correctness without significantly cannibalizing the dollar value
of feature development, thus creating more value overall.

3. Adaptive Semi-Automation
This section describes the principles guiding task decomposi-

tion and the construction of adaptive user interfaces to enable less-
skilled workers to perform the subtasks. In addition, it introduces
three design principles for effectively integrating less-skilled labor.
For ease of exposition, skilled developers will be referred to as
“Einstein”s and less-skilled workers as “John”s (in reference to the
American idiom “John Q. Public”).

The software engineering task should be decomposed into auto-
mated and human subtasks as depicted in Figure 2. Each subtask
that a John performs should (1) be easier to perform than the larger
task, (2) require human insight, and (3) be limited in scope. We
provide example decompositions for software correctness tasks in
the next section.

Once the task has been decomposed, an adaptive feedback loop
needs to be constructed for a John to interact with. In general,
the loop should introduce subtasks that build on the subtasks that
the John has already completed. Additionally, the loop might help
the John avoid retracing his own steps or direct him to a part of the
task-space that is computationally more difficult (and therefore less
likely for the tool to automatically solve in a reasonable amount of
time). Regardless of the primary purpose of the loop, clear feed-
back is necessary for the John to understand the consequences of
his actions and to complete actions with minimal insight or under-
standing of the tool.

To improve the cost-effectiveness of the less-skilled labor, we
propose the following three design principles:

Principle #1: Target a well-defined skill set User-performed
subtasks should target a specific, well-defined skill set. By target-
ing a specific skill set, the cost of finding a qualified John is re-
duced. In addition, the use of a consistent skill set helps to ensure
that continued use of the tool will make the John more efficient.

Principle #2: Exploit parallelism An hour of on-demand com-
puting on Amazon’s EC2 cloud service costs as little as $0.085
[1]. It’s clear that a task should be automated when it can. How-
ever, if the latency of the automated portion of the feedback loop
is large, a John could waste time waiting for a response. Simi-
larly, if the latency of the semi-automated tool is large, an Einstein
could waste time waiting for a response. Both result in an unfavor-
able ROI. Therefore, it is important to exploit parallelism in two
ways: (1) have multiple Johns work on independent subtasks at the
same time, and (2) have each John perform similar subtasks when
waiting for a response. Essentially, each John is acting as a pro-
cessor and therefore many common parallelization tactics can be

326



employed. However, humans are far worse at shifting contexts, so
careful thought must be given to how tasks are distributed.

Principle #3: Establish a market Schechter theorized that mar-
kets in which companies purchase defect reports (for previously
unknown defects) from testers could be used to measure and im-
prove software quality [15]. An efficient market would ensure that
(1) the price paid for each defect is minimized, (2) defects are re-
ported as quickly as possible, and (3) easier, cheaper-to-fix, defects
are reported earlier. Bacon et al. propose a similar marketplace in
which developers bid to fix bugs [3]. When the market clears, the
remaining bugs are not important enough for users to pay develop-
ers to fix them.

By utilizing similar markets (e.g., Amazon’s Mechanical Turk
[2]), tasks are naturally performed by individuals with the largest
comparative advantage. Depending on the needs of the tool and the
company, a John might perform correctness tasks for a company
over the course of five years or over five minutes; a John might
work in-house or halfway around the globe. Since ASA tools allow
for less-skilled labor, the market can be much more efficient than
one composed solely of skilled developers.

3.1 Tool Analysis
The set of research questions that should be considered when

building adaptive semi-automated tools is similar to that used when
evaluating traditional tools:

• What skill sets are required for the Einstein and John to use
the tool?

• What is the learning curve for the Einstein and John to use
the tool?

• Given a task and information such as the salaries of the Ein-
stein and John, how much time and money is saved by using
the tool?

• Given a fixed resource budget, can the tool provide benefits
(e.g., preventing bugs) beyond those provided by other meth-
ods?

Small changes to the tool and interface may result in large changes
to the efficacy of the tool when used by different groups (sensitiv-
ity). In addition, answering such questions becomes more difficult
when multiple roles are introduced — i.e., a semi-automated tool,
a software developer, and a less-skilled worker. For example, if the
Einstein spends an extra 10 minutes, will the John and the com-
puter finish three hours faster? By and large, analyzing an ASA
tool means characterizing a multi-factor optimization problem, the
solution to which is the most cost effective strategy for using the
tool given a fixed resource budget.

4. Examples
This section sketches three possible adaptive semi-automated tools

for testing, verification, and program synthesis. For each example
tool, we address why the humans are well-suited to perform the
task and why it is likely that using less-skilled labor would be more
cost-effective than using skilled developers.

4.1 Testing
Random test generators, such as Randoop [11], perform poorly

because they are unlikely to put complex objects into interesting
states. For example, when testing a graph ADT, many of the gen-
erated tests will be performed on simple, uninteresting graphs be-
cause not enough edge and node creation calls come before the pro-
cedure being tested. An ASA testing tool programs might leverage
procedure call ordering suggestions from a John.

Design Principles The subtasks can be easily parallelized by
running multiple instances of the test generator. A market could
be created for achieving various targets, such as branch coverage.

The John’s Edge The user’s understanding of the concept of
a graph should give the ASA tool an advantage over automated
tools. More generally, ASA tools stand to be the most effective for
object-oriented programs where the objects have a natural analog
(e.g., graphs, trees, cars).

The John’s edge lies in the simplicity of the task presented to the
user. Since the tool is taking care of the bulk of the detail work
(e.g., input generation), the John only needs to have a high-level
understanding of the code. This makes the skill requirement, and
therefore the cost, much lower. Use of a John also avoids any costs
associated with maintaining morale or employee retention when the
skilled developers are assigned to such insipid tasks.

4.2 Verification
Consider the task of verifying a program with ESC/Java [9]. An

adaptive semi-automated solution to the problem might involve the
Johns iteratively refining a set of invariants inferred with a static-
and dynamic-inference tool (such as Houdini [8] and Daikon [7],
as in [10]).

Design Principles To limit the required skill set for a particu-
lar John, the different verification tasks, e.g., verifying the absence
of null pointer or division by zero exceptions, should be kept as
separate as possible. Parallelization can then be realized based on
module and verification type. A marketplace could be established
for potential Johns to bid on procedures and modules to verify; the
specialization enabled by the splitting of verification job types will
drive down costs.

The John’s Edge The level of abstraction is key. Clearly, an au-
tomated system would outperform a John at solving an instance of
SAT. However, a John with even a basic mathematical background
can provide higher-level guidance such as suggesting relevant theo-
ries (e.g., quadratic arithmetic) or positing intermediary invariants.
In addition to the John’s own mathematical insight, the John can
take advantage of comments in the program and the lexical struc-
ture of the program.

There is anecdotal evidence that suggests individuals with rel-
atively basic computer science knowledge can successfully com-
plete certain verification tasks. In our spring 2010 Software De-
sign and Implementation course, the first-year computer science
students used the Java Checker Framework [12] to verify the ab-
sence of null pointer exceptions in their individual class projects.
In addition to the majority of the students completing the assign-
ment without erroneously bypassing the checker, we observed that,
in general, the students became more efficient at verifying program
modules over the course of the weeklong assignment.

4.3 Synthesis
Testing and verification are reactive — they verify the correct-

ness of existing code. An alternative approach is to create software
that is correct by construction using program synthesis tools. While
recent advances in program synthesis are exciting, general program
synthesis is beyond the state of the art.

Consider Armando Solar-Lezama’s program sketching work in
which an Einstein provides a program sketch and a reference im-
plementation or specification [16]. There are numerous ways to al-
locate the Einstein’s and John’s labor throughout the process of: (1)
creating a rough specification, (2) programming a reference imple-
mentation, (3) writing a program sketch, (4) refining the program
sketch and generating the program, (5) selecting which implemen-
tation to use if the sketch allowed multiple implementations. One
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reasonable labor allocation would be to have the Einstein perform
steps 1, 2, and 5 and provide an initial set of hints to the Johns for
steps 3 and 4. The existence of a reference implementation after
step 2 allows the Einstein to work on other engineering tasks that
depend on a working implementation.

Design Principles One way to control the target skill set of the
Johns would be to differentiate functions based on function char-
acteristics (e.g., iterative versus recursive). While parallelization is
easily achieved by having different Johns work on different func-
tions at the same time, the parallel relationship of the Johns to the
automated modules of the tool are more interesting. Ideally, the tool
should heuristically search the sketch space while the John is inter-
acting with the tool. The insight gained from the parallel heuristic
search can then be used to guide the John via feedback in the user
interface.

The John’s Edge Significant human interaction is required for
current program synthesis tools to be tractable. The Johns should
be more cost effective than the Einstein because once the primary
structure of the program has been determined, the bulk of the effort
comes from fighting with the tool. Given that the Einstein can give
the John hints as to primary structure of the program, the challenge
lies in becoming familiar with the particular tool being used. The
price of Johns familiar with the tool should be less than the cost of
the skilled developer. In any case, the correctness of the resulting
code is necessarily verifiable, limiting the risk of mistakes by a
John.

5. Auxiliary Challenges
Latency, intellectual property risk, and worker error are three

major challenges facing adaptive semi-automation.

5.1 Latency
Speed is important in software engineering — e.g., a type-checker

should not take two days to run. It is less clear how long it should
take to automatically generate a test suite or verify the absence of
run-time exceptions. The software engineering community needs
to define what it means for a tool to be “tractable.” This will enable
engineers to create a tool that companies want to use or to under-
stand why a tool isn’t being used.

Two approaches for mitigating latency are scheduling and ex-
ploiting time-zone differences. For example, in the case of schedul-
ing, companies typically schedule long-running automated processes
such as builds at night when most employees aren’t working. Amer-
ican companies leverage time-zone differences when out-sourcing
to countries such as India.

5.2 Intellectual Property Risk
Granting workers access to source code can pose a significant

intellectual property (IP) risk, especially if employees are located
in different countries.

Two approaches for mitigating intellectual property risk are em-
ploying workers in-house (or in a subsidiary when offshoring [14])
and restricting worker access. The former is straightforward; the
latter is not — the problem must be decomposed in such a way that
a John (or a group of Johns) cannot reassemble important aspects
of the system.

Limiting a John’s access, in general, will undermine the effec-
tiveness of the tool by limiting the availability of requisite informa-
tion. Therefore, it is important to find the equilibrium point where
the IP risk and benefit of broadening the John’s access are balanced.
As this point is different for each company and each tool, the neg-
ative effects of limiting a John’s view are not necessarily a deal
breaker.

5.3 Worker Error
When there is reason to mistrust the abilities or the intentions of

the human component, special care must be taken. ASA tools that
utilize unfiltered and ad hoc labor from global labor markets are
especially at risk.

In the extreme, the domain should be decomposed into subtasks
that can be checked automatically. This notion is similar to the NP
complexity class, for which there are efficient algorithms to verify
certificates (solutions), but not to create them. For example, inter-
mediary assert statements that the John supplies for use in program
verification can be checked automatically. When the John’s work
cannot be checked, it may be necessary to utilize a fusion mecha-
nism (e.g., a majority vote) that combines his answer with that of
other Johns. More advanced fusion mechanisms can automatically
adapt to changes in reliability [5]. The need for redundancy may
increase costs, however.

6. Conclusion
This paper has introduced adaptive semi-automated tools as a

method of decreasing software engineering labor costs. ASA tools
differ from traditional tools in that they decompose tasks into com-
puter and human elements that allow less-skilled workers to per-
form tasks via adaptive feedback loop. The software engineering
workforce is already somewhat specialized with specific roles —
e.g., developers and testers — but we propose special tools to per-
mit utilization of a much wider range of human talent.

Work on ASA tools should proceed in parallel with research on
fully automated tools. The practice of decomposing domains may
shed light on new strategies for reaching full automation.

Establishing correctness via ASA tools and less-skilled users is
not a perfect strategy. In particular, the reliance on less-skilled
workers may result in increased latencies, intellectual property risk,
and user error. These concerns can be controlled by means similar
those used in other domains.

Overall, adaptive semi-automated tools expand the set of tasks
that can be effectively performed by less-skilled workers, freeing
skilled developers to create value in ways that only they can.
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