
Sharing What We Know About Software Engineering

Michal Young
University of Oregon

michal@cs.uoregon.edu

Stuart Faulk
University of Oregon

faulk@cs.uoregon.edu

ABSTRACT
Software engineering research has long borrowed and adapted
ideas from other disciplines to adapt to the peculiar context
of building software. That context is less and less peculiar,
as automation and communication transform other fields,
and it is time for us to consider how approaches developed
in software engineering can be transferred and generalized to
other fields. Considering generalization of software engineer-
ing to domains outside computer science has implications for
both software engineering research and education.

Categories and Subject Descriptors
D.2 [Software Engineering]: General

General Terms
Design

1. INTRODUCTION
It remains commonplace to point out differences between

software engineering and“real”engineering (or between com-
puter science and “real” science) as flaws in software engi-
neering research and practice. Others, though, have long
noted the peculiar challenges of engineering “pure thought-
stuff” [1]. Software engineering research (sometimes led by
practice) has adapted and extended engineering methods to
these challenges.

Wing [7] has ably summarized the value of computational
thinking to those outside computer science, owing to the
growing role of computation as a tool as fundamental as
mathematics. We argue that these intellectual tools, par-
ticularly those from software engineering, generalize even
further, that in fact many other fields of engineering increas-
ingly face challenges that were confronted first in software
engineering. The distinction is subtle but important: While
the importance of computational thinking is largely in the
growing role of computation across all fields, principles and
methods in software engineering are not limited to direct use

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

of computation. Indirect effects of computation and commu-
nication technology make engineering of physical artifacts
more and more like engineering of software.

Software engineering research has long taken ideas from
other disciplines to adapt to the peculiar context of building
software. It is time for us to consider how approaches de-
veloped in software engineering can be transferred and gen-
eralized to other fields. Considering this question will have
effects on software engineering research as well education.

2. WHY SOFTWARE WAS SPECIAL (BUT
NO MORE)

The essential distinction between software and other en-
gineered artifacts has always been the absence of fabrication
cost.1 In conventional engineering of physical artifacts, the
cost of materials and fabrication has dominated the cost of
design and placed a check on the complexity of artifacts that
can be designed. When one bottleneck is removed, others
appear, and software engineering has therefore faced the es-
sential challenges of complexity and the cost of design to
an extent that conventional engineering has not.2 Software
engineering has focused on issues in managing complexity,
from process to modular design to cost-effective verification,
because that is the primary leverage point when the costs of
materials and fabrication are nil.

Automation and communication technology are reducing
the role of materials and fabrication in a variety of phys-
ical products. While this is sometimes from removing the
physical embodiment of what was always essentially an in-
formation good (e.g., replacing maps with mapping services,
books with e-books, etc), a very similar effect is obtained
when design is disaggregated from fabrication. In comput-
ing we are familiar with the example of fabless chip pro-
ducers, who produce chip designs that can be produced by
independent chip foundries. Similar disaggregation is taking
hold in fields outside electronics as well, such as the bicy-
cle factories in Taiwan that serve as the “fabs” for bicycles

1This peculiarity has troubled some to such an extent that
they have tried to imagine programming as a kind of fabri-
cation step. The analogy cannot withstand scrutiny. Space
and focus does not permit a detailed argument here, but
we take as a basic premise that programming is instead a
step in the detailed design of a computation, which is the
primary artifact produced by software engineers.
2There are other fields of design which likewise have little
or no fabrication cost (legislation, for example, and music),
but these have not traditionally been considered fields of
engineering, nor used (and thus been forced to adapt) engi-
neering methods.

439

designed elsewhere. While the physical artifact (e.g., the
bicycle) still provides a useful check on complexity, shar-
ing fabrication facilities and technology among competing
manufacturers leaves design as the differentiating factor for
competition.

3. WHAT WE KNOW
Software engineering is still a young field, but not all of

the differences between software engineering and more con-
ventional fields of engineering and science are flaws. Some
reflect progress in coping with the challenges of pure design
earlier and more intensely than other fields.

3.1 Designing the Design Process
Every field of engineering (and many fields outside engi-

neering, e.g., cartography, advertising, and movie-making)
have explicit design processes that are often formalized, stud-
ied, and taught to at least some degree. What is less com-
mon is treating the process of design itself as a thing to
be designed. It is commonplace in software engineering not
only to contrast different approaches to software develop-
ment, but also to reason about what makes one approach
more suitable in some situations (say, when requirements
are unclear because the application domain is relatively un-
precedented) and another approach more suitable in others
(say, when the software will control a safety-critical system).
It is commonplace not just to adopt and follow a prescribed
“best practice”, but also to combine and alter features of dif-
ferent design processes in systematic ways. Leading design-
ers of software systems are often also designers of processes
for designing software.

It can be difficult for software engineers to perceive how
advanced software engineering is relative to other engineer-
ing fields with respect to designing the design process. We
envy the discipline and predictability in the design processes
for bridges and automobiles, or at least what we imagine
those processes to be. But we are fooled, because those
design processes seem orderly and predictable only because
they are relatively stagnant, and because the cost of the
physical artifacts so dominates the costs of inefficient de-
sign.3 In fact, as the efficiency of design itself becomes dom-
inant in a wider array of fields, it will be important to share
what we know about designing the design process.

3.2 Abstraction and Evolution
Abstraction is an essential step in any field of design, from

aircraft to drugs to drugstores. Often the designer creates
several abstractions of the same artifact (e.g., one to ensure
airfoils have sufficient lift, another to ensure restroom facil-
ities are appropriately distributed in the passenger cabin).
What is rare in engineering, but commonplace in software
engineering, is explicit study of how to invent and employ
new abstractions.

In software engineering, choice of abstractions is tied di-
rectly to characteristics of the software design process, and
particularly to design artifacts as objects of value, to be re-
used and modified over time. Since the pioneering work of
Parnas [4], we have understood that the choice of an abstrac-
tion (especially, but not only, the abstraction presented by

3A reviewer of of this paper noted that automobile design
has already diverged from our idealized conception of an or-
derly design process with electrification, and is experiencing
the classical software engineering problems of complexity.

a module interface specification) has direct practical conse-
quences in making some design changes cheaper and faster,
and others impractical. To a lesser degree, we understand
how the cost and pace of design depends in part on the ab-
stractions we choose to make explicit or formal at different
stages of development, and how the pressures affecting those
changes may evolve over time.

Imperfect and evolving as our understanding of abstrac-
tion may seem, and as difficult as we find imparting the art
of abstraction to students, software engineering and com-
puter science are steps ahead of other fields in both under-
standing and pedagogy of abstraction as a design step. The
difficulty in pedagogy, in particular, is largely because stu-
dents do not encounter invention of abstractions as a design
step in other fields. They certainly encounter abstractions
in mathematics, in physics, even in social sciences, but in no
other field are they likely to encounter explicit instruction
in devising and evaluating novel abstractions as a way of
decomposing complex problems into independently solvable
sub-problems, little more how to devise and evolve abstrac-
tions that will continue to be useful as problems evolve, or
across related problems.

3.3 Notation Design
Like abstractions, useful notations are an important in-

tellectual tool in many disciplines. What is less common is
notations as subject of explicit inquiry. In software engi-
neering, not only conventional programming languages but
a variety of other notations, from requirements descriptions
to configuration descriptions to test plans have long been
studied.

Important understandings developed in the overlap and
intertwining of programming languages and software engi-
neering research include the ways in which notational power
and flexibility are traded for analyzability, how and to what
extent portions of a large notational artifact can be indepen-
dently analyzed and the results efficiently combined, and
how notational design impacts the extent to which useful
diagnostics can be extracted from analysis and use (that is,
compiler and run-time error messages). There is, to our
knowledge, no comparable field of study for notations devel-
oped in other disciplines, and little guidance to developers
of notations outside computer science.

Software engineering researchers also study aspects of no-
tation design outside the core concerns of mainstream pro-
gramming language research, including interface languages,
diagrammatic notations, and markup languages. Our grow-
ing understanding of notation design is closely tied to our
understanding of software processes, evolution, and use of
abstraction. For example, attempts to separate presenta-
tional, content, and structural markup in HTML4 are a clas-
sic exercise in information hiding and modularity, applied in
the context of notation design.

4See, e.g., http://www.w3.org/TR/WCAG10/#content-
structure. One may also find in logs of design discussions
the question of voice rendering as an acid test for distin-
guishing markup that is too presentational: <emph> can
be considered structural content because one may imagine
rendering it in many forms, including voice, but (bold)
is excessively presentational because it has an interpre-
tation only in printed text. Testing against hypothetical
implementation changes is precisely how information hiding
principles are applied to determine whether an abstract
interface hides the design secrets of a module.

440

Less studied, but equally important, is the evolution and
codification of conventions into notations, including pro-
gramming languages. Ryder and Soffa’s study of the in-
terplay between software engineering and programming lan-
guages [5] is a beginning. It seems likely that understandings
of other domains and the notations used in those domains
similarly co-evolve, and that lessons from the evolution of
software engineering concepts and notations could be gener-
alized.

3.4 Meta-Engineering
The unique power of these conceptual structures becomes

increasingly evident as they are applied to themselves. While
“abstractions of abstractions” or designing “processes to de-
sign processes, to design processes ” may sound like con-
voluted self-indulgence, such thinking is foundational to a
growing understanding of, and facility with, meta-engineering:
the engineering of engineering practices. While all engineer-
ing disciplines necessarily examine their own practices, this
tends to be a discipline distinct from the engineering prac-
tice itself. Constrained by material processes and immutable
physics, emergence and adoption of new practice tends to be
slow. This is not the case with software engineering.

This self-reflective approach to meta-engineering is exem-
plified in the development of software product line engineer-
ing and, more recently, domain-specific modeling. Product-
line engineering is, among other things, a process-development
process. Developing a software product-line requires devel-
oping a set of assets from which members of a family of soft-
ware systems can be produced quickly and easily. A critical
asset of any product-line is the process for using the other
assets (code, generators, etc.) to produce individual mem-
bers of the software product line. This process (called the
“application engineering process”) is, itself, a product of an
earlier phase of the product-line process (domain engineer-
ing). In short, the product-line process embeds a process for
designing and developing application engineering processes
tailored to the assets and generation methods deployed.

The product-line process further illustrates the power of
this paradigm in that it at once applies and is a product
of meta-engineering, deploying recursively the concepts of
the design-of-design, abstraction, evolution, and language
development. Abstracting the common requirements of all
the prospective systems in the product-line is the basis for
developing common assets. Specifying precisely which mem-
ber of the product-line should be produced requires devel-
oping a domain-specific language (the application modeling
language). Deploying the product-line in any real setting
requires thinking ahead about how the embedded processes,
abstractions, languages, and other assets will evolve over
time.

Likewise, the product-line process itself is necessarily the
product of meta-engineering. For example, this is evident
in the specification of the FAST product-line process [6],
which is explicitly described as a product of process devel-
opment. A process modeling notation and tool are intro-
duced to specify the process. Further, the process specified
is itself an abstraction, representing the activities, artifacts,
and roles common to a family of product-line processes.

We see the continuing extension of this thinking in emerg-
ing approaches to domain-specific modeling, software fac-
tories, and supporting tools. These approaches explicitly

address the processes of meta-engineering in providing mod-
els, languages, and processes for building coherent sets (e.g.,
domain-specific) of models, languages and processes. Sup-
porting tools (e.g., Metaedit+ [3]) provide languages and
tools for building product-line languages and tools. Such
generator-generators provide the capabilities to define new
modeling languages and specify their interpretation in soft-
ware. Output of the tool is a tool that embeds the domain
model and language, generating members of the software-
family from specifications in the language.

The real-world power of the approach have been amply
demonstrated. Processes for process improvements (e.g.,
the CMMI) have become standardized and there are tools
for developing abstract process models and deploying in-
stances (e.g., Eclipse process modeler). Product-line ap-
proaches are now deployed in industrial applications from
automobiles to medical systems and cell phones. Our own
research has applied these concepts to domains as diverse
as new processes for developing massively parallel programs
[2] and self-adaptive assistive device product-lines for cogni-
tively impaired individuals.

Software engineerings rapidly evolving meta-engineering
capabilities have no parallel in more traditional disciplines.
Of particular importance are the generalizable methods needed
to analyze new domains and apply the principles and prac-
tices of meta-engineering to create new processes, methods,
and tools. As software becomes increasingly ubiquitous and
design supplants manufacturing in more and more fields, the
need for such capabilities must grow. The necessary cogni-
tive tools are being developed in software engineering.

This sampling of generalizable, transferable understand-
ings from software engineering research (and practice) is
hardly exhaustive. We have not touched upon what is un-
derstood about requirements engineering, or management
of distributed teams, or validation and verification. In all of
these, software engineering research and practice have de-
veloped approaches that were initially peculiar to the engi-
neering of software, but which are likely to be increasingly
relevant to other fields.

4. IMPLICATIONS FOR RESEARCH AND
EDUCATION

If one accepts the argument that understandings devel-
oped in software engineering research can and ought to be
shared with other fields, then what should we as software
engineering researchers do? Mere evangelism is of doubtful
value, but there are pragmatic steps we can take in both
research and education.

Many of us already participate in collaborative, cross-
disciplinary, applications-oriented research. In such research,
we surely ask ourselves regularly both what we bring to the
discussion with our peers in other disciplines (more, we hope,
than just facility in building useful software), and what un-
derstandings we can bring back to computer science.

Taking seriously the proposition that software engineer-
ing concepts are generalizable adds a bit to both questions.
We can ask ourselves, what is the relation of the problems
encountered in another domain to common problems in soft-
ware engineering? How can software engineering concepts be
applied in that domain, in ways that extend beyond engi-
neering software for the domain? What fails to generalize, or

441

requires adaptation, and why? By pursuing these as ques-
tions, we avoid off-putting hubris. And to the extent we
find even partial answers, we contribute in a more funda-
mental way both to the field of application and to software
engineering research.

Many of us are also educators. Wing has argued persua-
sively that computational thinking skills are valuable to stu-
dents in all disciplines, and lists abstraction and separation
of concerns among the exemplars of computational think-
ing [7]. Concerning ourselves explicitly with how software
engineering concepts generalize to other fields also prepares
us to better communicate those concepts to our students,
including those who will ultimately pursue other fields of
inquiry.

5. SUMMARY
Software engineering was initially unique among engineer-

ing disciplines in that, having little or no costs of mate-
rials and fabrication, it was forced to grapple with other
problems. Ironically, the success of computation and com-
munication technology is making software engineering less
unique. In other fields, the cost of materials and fabrica-
tion are either declining relative to the cost of design, or by
being disaggregated are becoming less significant in compe-
tition. Thus concepts and approaches that were developed
first for software engineering are becoming increasingly rel-
evant in other fields. Generalization of software engineering
approaches to other fields should be an explicit goal of fu-
ture software engineering research, and can enrich not only
those other fields but also our understanding of software en-
gineering.

6. REFERENCES
[1] F. P. Brooks, Jr. The mythical man-month (anniversary

ed.). Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995.

[2] S. Faulk, E. Loh, M. L. V. D. Vanter, S. Squires, and
L. G. Votta. Scientific computing’s productivity
gridlock: How software engineering can help. IEEE
Des. Test, 11(6):30–39, 2009.

[3] S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling:
Enabling Full Code Generation. John Wiley & Sons and
IEEE Computer Society Press, 2008.

[4] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Commun. ACM,
15(12):1053–1058, 1972.

[5] B. G. Ryder, M. L. Soffa, and M. Burnett. The impact
of software engineering research on modern
progamming languages. ACM Trans. Softw. Eng.
Methodol., 14(4):431–477, 2005.

[6] D. M. Weiss and C. T. R. Lai. Software product-line
engineering: A family-based software development
process. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1999.

[7] J. M. Wing. Computational thinking. Commun. ACM,
49(3):33–35, 2006.

442

