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ABSTRACT

Generally believed to be a problem belonging to the compiler and
architecture communities, performance optimization has rarely gained
attention in mainstream software engineering research. However,
due to the proliferation of large-scale object-oriented software de-
signed to solve increasingly complex problems, performance is-
sues stand out, preventing applications from meeting their perfor-
mance requirements. Many such issues result from design princi-
ples adopted widely in the software research community, such as
the idea of software reuse and design patterns. We argue that, in
the modern era when Moore’s dividend becomes less obvious, per-
formance optimization is more of a software engineering problem
than ever and should receive much more attention in the future. We
explain why this is the case, review what has been achieved in soft-
ware bloat analysis, present challenges, and provide a road map for
future work.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—Debug-

ging aids; D.2.8 [Software Engineering]: Metrics—Performance

measures; D.3.4 [Programming Languages]: Processors—Mem-

ory management, optimization

General Terms

Performance
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1. INTRODUCTION
Over the course of 17 years from 1986 to 2002, the performance

of microprocessors improved at the rate of 52% per year. These

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

astounding technology advances provided “free lunch” to the soft-
ware community, which, for most of the time, enjoyed the perfor-
mance improvement by simply upgrading the hardware on which
an application runs. Software performance scales well with Moore’s
law, providing an opportunity for the software engineering commu-
nity to focus on high-level properties of a program, such as reliabil-
ity, reusability, ease of understanding, etc., assuming performance
has been appropriately taken care of by the underlying runtime sys-
tem and architecture.

What grows even faster than the clock speed is the software func-
tionality and size (a.k.a., Myhrvold’s Laws). For example, the num-
ber of lines of code for the Windows Vista operating system in Jan-
uary 2008 is almost 150 times as large as that for Windows 3.1
in January 1992, and this growing speed is about 15 times greater
than that for the number of transistors per chip unit area predicted
by Moore’s law [18]. Myhrvold’s premise that “software is a gas”
describes precisely the phenomenon that no matter how much im-
provement has been achieved on hardware, developers always have
the tendency to add functionality to make their software push the
performance boundaries. There is an ever-increasing demand for
performance optimization in modern software despite the employ-
ment of faster CPUs and larger memory systems.

Runtime bloat In many cases, performance problems in a large
application arise not from the lack of sufficiently fast hardware, but
instead from the runtime bloat from which it suffers. The term
bloat refers to a general situation where redundancy exists toward
finishing a task, which could have been achieved more efficiently.
Two types of runtime bloat are often seen in modern object-oriented
applications: memory bloat that refers to space inefficiencies and
execution bloat that occurs due to the execution of unnecessary op-
erations. A typical example of memory bloat in Java applications
is a memory leak, which is caused by unnecessarily holding refer-
ences that are no longer used. While a memory leak does not affect
the execution of a program, the accumulation of unused objects can
quickly exhaust the heap space and crash the program. Examples
of execution bloat are inappropriate design/algorithm choices: run-
ning an O(n2) bubble sort algorithm on a large database of items
for which a faster quicksort algorithm may be more suitable, or us-
ing a SOAP protocol to transmit simple format data that can be sent
directly from a client to a server1.

In many cases, memory bloat and execution bloat exist simul-

1According to [19], the conversion of a single date field from a
SOAP data source to a Java object can require as many as 268
method calls and the generation of 70 objects.

421



taneously to cause a performance problem. As an example, us-
ing a java.util.HashSet that always contains a single ele-
ment involves both types of bloat: the internal implementation of
HashSet creates and maintains a HashMap and delegates all the
work to this HashMap. The big cost of creating and maintaining
the data structure cannot be amortized if it contains a small number
of elements. In this case, memory bloat exists as storing this single
object has large space overhead, while execution bloat manifests
when time is wasted on creating and maintaining the data structure
that is not necessary for the forward progress.

Chronic runtime bloat can have significant impact on applica-
tion running time, throughput, and scalability. Server instances that
suffer from bloat can miss their scability goals by orders of magni-
tude (e.g., a server application designed to support millions of users
could only accommodate a few hundreds due to inefficiencies [21]).
As another example, by avoiding the generation of strings that are
used only for debugging purposes, we have managed to reduce the
running time of DaCapo/bloat [3] by 35% [38]. While a few redun-
dant objects and operations may seem insignificant, their effects
can quickly get exacerbated due to nesting and layering. This is
especially the case in large-scale object-oriented applications that
are built on top of a sea of abstractions and libraries.

Has it been solved by multicore? Over the past few years, the
effect of Moore’s law has transitioned from the growth of single-
processor performance to the increase of the number of indepen-
dent processors on a chip, leading to the blooming of multicore
computers, parallel algorithms, and user-level tool support that help
programmers exploit the parallelism of the underlying system [18,
2]. While performance improvement can usually be seen by paral-
lelizing sequential programs, for large-scale enterprise applications
that are already multi-threaded, the problem of excessive bloat will
become increasingly painful as the number of cores grows, because
memory bandwidth per core goes down and clock speed could not
ameliorate ever-increasing levels of inefficiency. By fixing general
memory and execution inefficiencies, IBM researchers have man-
aged to increase the throughput of a large document management
server more than twice as much as an alternative that tackles the
problem by improving both the quality and quantity of the hard-
ware. While this case study was designed to investigate multicore
scalability, it concludes that general inefficiency is the most im-
portant performance bottleneck in large-scale enterprise-level Java
applications [1].

Why a software engineering problem? Approaches for tack-
ling the bloat problem can cross almost all stages of development,
and can thus involve researchers from different SE fields. Our
guiding principles in the community encourage certain forms of
excess. Programmers are taught to pay more attention to abstrac-
tions and patterns to favor reuse and code readability, leaving per-
formance to the compiler and runtime system, such as the Just-In-
Time (JIT) compiler and garbage collector (GC). However, when
the abstractions become deeply layered and nested, the optimizer
can no longer clean up the runtime mess [21, 38]. As a commu-
nity, we may need to refine our long-held principles to take into
account performance. For example, we may teach programmers to
be more considerate during the creation of APIs. While a general
interface is important for reuse, some specialized versions may also
be needed for clients that only have simple requests which can be
processed with higher efficiency.

It is hard to have definitive evidences to decide whether an ap-
plication has runtime bloat, because the definition of bloat is rela-
tive and based entirely on the comparison between the current im-
plementation and a more optimal one, if that exists. This nature
of bloat can also compromise the effectiveness of any automatic

optimization technique provided by even the state-of-art compil-
ers and architectures, as the decision is rather subjective and re-
quires much involvement of human insight including both domain
knowledge and programming experience. Finding such inefficien-
cies can be naturally thought of as a testing problem, where special
test strategies (e.g., worst-case complexity testing [7]) may need to
be created to evaluate how efficient a specific implementation is.
It is also possible to employ sophisticated program analysis tech-
niques, such as those developed in the SPEED project [11, 15, 14,
12, 13], to compute symbolic resource bounds for program com-
ponents, which can provide useful insights into how they perform
as a function of their inputs and can produce early warnings about
potential performance problems.

A natural step after bloat is found is to remove it. Program anal-
yses may play a key role in this stage of the work. For instance, dy-
namic analyses and profiling techniques could be used to identify
frequently-occurring bloat patterns, and next, semantics-preserving
static analyses could be designed to transform a bloated program
into a bloat-free one, based on such patterns.

In a long-term research plan, bloat analysis can become a crit-
ical task in dealing with programs that have resource constraints
as such programs will be the mainstream of the next-generation
mobile computing. We envision a chain of new methods across
the entire software life cycle that are designed to alleviate bloat,
such as new language features, type systems, performance require-
ment specifications, and testing and analysis techniques. This chain
of methods should take a performance-centric view, and can have
conspicuous impact on the mobile software industry.

Our work We have already started research projects on soft-
ware bloat analysis [19, 24, 40, 38, 22, 39, 41]. Over the past few
years, we have analyzed dozens of real-world Java applications,
found many severe bloat cases, and achieved considerably large
performance improvements after removing the detected bloat. We
realized that this work only scratches the surface and more collab-
orative research should be conducted to tackle this problem. Sig-
nificant research opportunities are possible, if we, as a community,
understand the problem, and start paying attention to it.

2. THE STATE OF THE ART
This section briefly discusses some existing work on bloat anal-

ysis, and presents a set of research challenges that we face.
Memory leak detection in managed languages As a type of

memory bloat, a memory leak in a managed language occurs when
object references that are no longer needed are unnecessarily main-
tained. Static analyses can be used to attempt the detection of such
leaks. However, this detection is limited by the lack of scalable
and precise reference/heap modeling (a well-known deficiency of
static analyses), reflection, multiple threads, scalability for large
programs, etc. Thus, in practice, identification of memory leaks is
more often attempted with dynamic analyses [23, 4, 16, 17, 40, 5,
36, 6, 25].

Most existing work follows a “from-symptom-to-cause” diagno-
sis approach that looks for suspicious objects and then attempts to
locate the leak cause from these detected objects. The detections
of both suspicious objects and root cause are heuristics-based. For
example, work from [23, 17] uses growing numbers of instances of
certain types as an indicator of leaking objects while work from [16,
4, 25] identifies stale objects that are not used for a while. Next, the
root cause of a memory leak is located by traversing backward the
object graph from suspicious objects. However, the major limita-
tion of a heuristics-based approach is the imprecision of the heuris-
tics in the presence of a great number of objects and extremely
complex referencing relationships. For example, neither growing
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instances nor staleness can precisely capture leaking objects, and it
is also difficult for the graph traversal algorithm to locate exactly
the cause of the leak.

To overcome this problem, the work from [40] takes a container-
centric view and detects leaks by modeling and profiling container
behaviors. This approach is based on an important observation that
many memory leaks in Java are caused by misuse of containers.
The limitation of this work is that leaks that are not container-
induced will be missed. Future work may extend this approach
to handle more general memory leak cases.

Research related to Java memory leaks also includes the devel-
opment of run-time techniques that can survive memory leaks by
either swapping stale objects to disk [5, 36], or simply reclaiming
objects that are highly unlikely to be used again [6]. These tech-
niques can maintain stable performance and survive failures for
long-running applications, thus extending executions in the pres-
ence of memory leaks.

Memory bloat detection The work from [24] introduces health

signatures to evaluate if an application has achieved a good bal-
ance between necessary memory consumption and data structure
memory overhead. A focus of this work is Java collection objects.
For example, this analysis can show that a HashMap of 2-character
Strings devotes 29% of its space to pointer overhead, and a Hash-
Set object can have even higher overhead. Aggregating health mea-
surements for individual collections can reveal memory bloat for an
entire application. The report shows a real application that devotes
74% of its memory to collection fixed and per-element costs, a per-
centage surprising enough to motivate us to take actions to avoid
bloat.

Execution bloat detection Similarly to heuristics-based mem-
ory leak detection techniques, most of the work that detects execu-
tion bloat is based on side effects (i.e., suspicious behaviors) that
bloat exhibits. The categories of side effects that have been consid-
ered include large volumes of temporary (short-lived) objects, pure
heap value copies, and inappropriate container behaviors.

(1) Temporary objects. Dufour et al. [9] propose a blended prob-
lem analysis technique, which applies static analysis to a region of
dynamically collected calling structure with observed performance
problem. By approximating object effective lifetimes, the analy-
sis has been shown to be useful in classifying the usage of newly
created objects in the problematic program region. Shankar et al.

develop a JVM-based tool called Jolt [27] that identifies regions
that make heavy use of temporary objects. The tool forces the JIT
compiler in the JVM to perform aggressive method inlining in such
regions so that the JIT may find more optimization opportunities
(e.g., stack allocating more temporary objects).

(2) Pure copies. A long sequence of pure heap copies without
computations is very likely to indicate redundant operations. A typ-
ical example is the existence of multiple representations of the same
data, which keeps being wrapped and unwrapped among compo-
nents that use these different representations. Work from [38] pro-
poses a copy profiling technique that detects bloat by identifying
copy-heavy regions. It has been shown to be helpful in pinpointing
heap data structures that have their stored data directly copied from
other data structures. The unused string problem in DaCapo/bloat
described earlier was found using this approach.

(3) Container bloat. An important source of bloat is the inap-
propriate use of containers. Different container types and imple-
mentations are designed for different usage scenarios, so choosing
containers without understanding their costs and benefits could lead
to significant memory and execution bloat. For example, HashSet
is suitable for storing a large number of elements and providing
quick membership test, and should not be used if the number of

elements is relatively small. Work from [26] proposes a dynamic
technique that profiles programs to make container choice recom-
mendations. This set of recommendatations can be applied auto-
matically by transforming the program or presented to the user for
diagnosis purposes.

Recent work from [41] identifies two specific types of container
inefficiencies, namely, underutilized container and overpopulated
container. This work proposes the first static analysis to identify
bloat: this analysis automatically extracts container semantics and
does not require user annotations. Container functionality is ab-
stracted into two basic operations ADD and GET, and the analysis
detects stores and loads that concretize them based on the context-
free-language reachability formulation of points-to analysis [34,
42]. The second step of the analysis is to approximate the frequen-
cies of the identified stores/loads to/from heap locations based on
the nesting relationships among the loops where they are located:
if the number of ADD operations is very small, the container is un-
derutilized; if the number of ADDs is significantly larger than the
number of #GETs, it is overpopulated because many elements are
not retrieved at all.

Different from these side-effect-based bloat detection techniques,
work from [39] proposes a dynamic cost and benefit analysis that
detects bloat by capturing data structures that are expensive to con-
struct but have low benefit for the forward execution. Such high-
cost-low-benefit data structures are common in many types of inef-
ficiencies despite the different observable symptoms they may ex-
hibit. The cost of a heap value is considered as the number of in-
structions executed to produce this value from other existing heap
values; The benefit of a heap value is considered as the number of
instructions executed to transform this value to other heap values.
By ranking data structures based on their cost-benefit rates, the tool
has been shown to be helpful in quickly understanding the cause of
the bloat.

Bloat removal It could be extremely costly to construct and ini-
tialize data structures that are invariant across loop iterations. We
are currently working on a static analysis that attempts to hoist such
data structures out of loops. The analysis works on two dimen-
sions: it first identifies a loop-invariant logical data structure, and
next checks whether it can be hoisted by attempting to hoist state-
ments that access it. For data structures that are not safe to hoist, it
computes hoistability measurements that are presented to the user
for further inspections.

Despite all advances made by existing work, a number of signif-
icant challenges remain. Here we describe three most significant
challenges that we have faced in our work.

Challenge 1: improving dynamic analysis precision In most
cases, dynamic analysis is the “weapon of choice” for bloat detec-
tion. The most significant limitation of such postmortem dynamic
bloat detectors is that the generated reports usually have a large
number of false positives, pointing to program entities that are all
“suspicious” according to certain rules used by the tool but are not
really problematic. The problem with the memory leak detectors
described earlier is a typical example. We found such a problem
exists for almost all dynamic detectors that we have developed, pri-
marily because it is extremely hard to define selection rules that
can describe unique characteristics for the problematic program
entities. A possible solution (adopted by container profiling [40])
is to reduce our expectation from detecting a general class of prob-
lems to a very specific class, for which a more precise symptom
definition is possible and is more closely related to the root cause.
This small class of problems has to appear frequently so that the
sacrifice of ignoring other problems (not in this class) can be jus-
tified. It remains to be seen, however, how such a solution can be
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applied to a more general setting of bloat detection, for example, to
distinguish copies that are useful and those that are not.

Challenge 2: static vs. dynamic analysis The container ineffi-
ciency detection work from [41] uses static analysis to reduce dy-
namic analysis false positive rates, because the static analysis can
exploit source code properties that represent programmers’ inten-
tions or mistakes that are inherent in the program. This comparison
between static and dynamic analysis used in bloat detection is quite
interesting and is completely opposite to the traditional belief that
dynamic analysis is more precise, for example, for testing and de-
bugging. This difference results from the two different uses of the
analysis, namely for inferring and for checking. Alternatively, dy-
namic analysis can be used to prune the code entities that are con-
sidered by a subsequent static analysis, as done in [8, 9]. It remains
to be investigated if there are other types of bloat whose detection
can take advantage of a static analysis or a hybrid technique.

Challenge 3: specification-based bloat detection It is clear that
the primary reason why the state-of-the-art tools are not precise
enough is the lack of precise specifications that define what bloat is.
The problem of bloat detection could be made much easier if there
existed (non-functional) specifications that a programmer can use
during development. Such specifications may bridge the gap be-
tween the non-functional performance analysis and the huge body
of existing work on checking and testing functional properties of
programs, thus making it possible to completely automate the per-
formance tuning process.

3. FUTURE DIRECTIONS
In this section, we describe future research opportunities, with

a focus on what the SE community can do to address the ever-
increasing levels of inefficiency in object-oriented applications.

Thin patterns While design patterns [10] have been extremely
successful in helping programmers write highly-manageable code,
they are the root causes of many types of runtime bloat. In many
large applications, for instance, in order to implement a visitor pat-
tern, the programmer uses inner classes to represent different kinds
of visitors, which contain nothing but a visit method. Such a
visitor class can be instantiated an extremely large number of times
(e.g., the allocation sites are located in loops with many layers of
nesting), and all objects created are identical: they have no data
and are used only for dynamic dispatch. It is not free to create and
deallocate these objects, and significant overhead reduction can be
seen when we use only the method without creating objects.

Future research on patterns may consider the creation of a few
specialized versions for each existing pattern (i.e., thin patterns),
which provides different tradeoffs between inefficiency and modu-
larity. On the compiler side, pattern-aware optimization techniques
could be expected to remove inefficiencies and generate higher-
quality code.

Performance-conscious modeling languages and tools While
performance-aware design has been extensively studied in the field
of software performance engineering (e.g., [28, 37]), this research
focuses primarily on high-level architectures and processes, rather
than low-level program inefficiencies. Hence, the problem is worth
re-considering in the future, and additional efforts should be fo-
cused on explicit bloat avoidance in the state-of-art modeling lan-
guages (e.g., UML) and tools (e.g., EMF and Rational Software
Modeler).

Careless design can lead to significant runtime bloat, especially
when modeling tools are used to generate code skeletons automat-
ically from the design. As an example, we found that one cause of
bloat are carelessly chosen associations. Consider several classes
X1,X2, . . . together with the associations between them (e.g., as

defined in object-oriented design and captured in UML class dia-
grams). The associations typically include directionality (uni- vs.
bi-directional) and multiplicity (e.g., one-to-many). There are of-
ten many semantically-equivalent ways to implement them in the
code. The programmer may choose one of these possibilities with-
out truly understanding the implications of her/his choice on the
memory footprint of the application. Even worse, in many cases,
the programmer does not make this choice at all— the default data
model defined in the modeling tool is applied automatically behind
the scenes. A performance-conscious design model will take per-
formance requirements as an explicit parameter, and this will result
in extended modeling languages and tools that incorporate various
resource constraints.

Unit testing/checking bloat It is important to avoid inefficien-
cies early during development before they accumulate and become
observable. This calls for novel program analysis and testing tech-
niques that can work for incomplete programs. While there exists
a body of work on unit testing and component-level analysis, it is
unclear how to adapt them to verify non-functional properties. For
example, it may not be easy to write assertions (i.e., test oracles)
for unit testing, as redundancy at the unit level may not be obvi-
ous and thus the assertions are likely to be insensitive to explicit
performance checks (e.g., running time and space).

This difficulty actually points to the more general non-functional
specification problem. What can we assert about performance other
than running time and space? Can any functional properties of a
program be employed to specify performance requirements? Good
specifications must be closely related to a certain bloat problem,
and not simply describe the symptom that the problem exhibits.
Significant improvements could be achieved in the research of per-
formance analysis if such specifications were designed and evalu-
ated.

Autonomous system and program synthesis Looking a bit far
into the future, the feedback-directed compilation techniques in a
JVM may be powerful enough to unpile the “big pileup” [20] dur-
ing the execution. For example, dynamic object inlining may be
a effective approach to reduce pointer overhead. In order to re-
move container inefficiency, the runtime system could automati-
cally shrink the space allocated for the container if it observes that
much of the space is not used. These technique of course require
sophisticated profiling techniques that are semantics-aware and in-
cur sufficiently low overhead. Recent advances in program synthe-
sis [32, 29, 33, 30, 31, 35] shed a new light on solving the execution
bloat problem. Given a user-defined specification, a program syn-
thesis tool can automatically choose from a space of algorithms the
most efficient one. This can apply naturally in the research of bloat
detection to find efficient implementations, and may further be used
to generate implementations for performance-critical tasks that are
guaranteed to meet performance requirements.

4. CONCLUSIONS
In this position paper, we describe software bloat, an emerg-

ing problem that has increasingly negative impact on large-scale
object-oriented applications. We argue that it is essentially a soft-
ware engineering problem, and it is time for the SE community to
start contributing new solutions for it. We survey some of the exist-
ing work on bloat analysis, describe challenges, and outline some
promising future directions. We believe there are larger opportuni-
ties than ever before for the SE community to make software more
efficient, and this can happen entirely at the application level, with-
out the help of ever-increasing hardware capabilities.
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