
Software Testing Research and Software Engineering
Education

Thomas J. Ostrand
AT&T Labs - Research

180 Park Avenue
Florham Park, NJ 07932

ostrand@research.att.com

Elaine J. Weyuker
AT&T Labs - Research

180 Park Avenue
Florham Park, NJ 07932

weyuker@research.att.com

ABSTRACT
Software testing research has not kept up with modern soft-
ware system designs and applications, and software engi-
neering education falls short of providing students with the
type of knowledge and training that other engineering spe-
cialties require. Testing researchers should pay more at-
tention to areas that are currently relevant for practicing
software developers, such as embedded systems, mobile de-
vices, safety-critical systems and other modern paradigms,
in order to provide usable results and techniques for practi-
tioners. We identify a number of skills that every software
engineering student and faculty should have learned, and
also propose that education for future software engineers
should include significant exposure to real systems, prefer-
ably through hands-on training via internships at software-
producing firms.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education

; D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Reliability

Issues in Software Testing Research
Where is software going - all those billions or trillions of lines
of code currently running and the gazillions more that will
be written in the next decade and how does it relate to the
current software engineering research literature? Where is
the research community headed and are research and prac-
tice converging? When we write our research papers, is there
anyone out there listening or are we writing for ourselves and
for each other?

The sorts of software systems discussed in the software
testing research literature, by and large, are systems that
are either stand-alone, or that connect with other software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

systems that run on what are typically thought of as com-
puters. These systems take inputs which are characters, or
numbers, or files of characters and numbers. It is relatively
easy to understand how to test them, even if it is not done
very well, or very thoroughly, or if good ways of assessing
the comprehensiveness of the tests are lacking.

Typically in the research community, testing is equated
with functionality testing. The sorts of issues that are ad-
dressed are how to generate and select test cases, how to
do it efficiently, how to assess adequacy, etc. Of course, all
of these are important issues, but this research has been
done for decades and very few of its results have changed
the way software is tested in any fundamental way. We be-
lieve this is because researchers are not talking about the
types of software that industry and government are increas-
ingly concerned about, and are not talking about testing
for the types of problems that are of the greatest concern
for these systems. Additionally, researchers generally do
not provide compelling evidence that the techniques they
propose in their research will actually be successful or be
practically beneficial.

The practitioners we have interacted with are generally
knowledgeable, intelligent, and well educated people. They
are faced with major issues of limited resources and tight
deadlines for testing large, complex systems, but it is often
clear that they view what they read in the research literature
as not addressing their problems, or consider the techniques
described as not scalable or requiring artifacts that they do
not have, such as formal specifications. Because it is rare for
research results to be accompanied by or followed up with
an industrial-scale empirical study that provides compelling
evidence of the value of a proposed technique, practitioners
usually feel that adoption is not worth the effort and the
risk.

Finally, practitioners often complain about the lack of ro-
bust tool support for a proposed testing research approach.
If a prototype tool that is hard-to-use and understand is
provided by the researchers, practitioners will be very reluc-
tant to spend time learning it, especially when the benefits
are doubtful, and its operation is frustrating. If the task of
building a usable tool is left to its potential users, it will
almost certainly not happen. Practitioners have their hands
full with the subject system they are building; they are gen-
erally not willing to invest significant time out of their al-
ready overstretched schedules to implement a new technique
that they view as unproven because there are no large-scale
empirical studies to back it up.

273

We recently participated in a US National Academy of
Sciences Workshop and panel on Industrial Methods for the
Effective Test and Development of Defense Systems. It was a
real eye-opener, even for people like us who work in industry
and work regularly with software development projects.

We listened to test managers from the automotive indus-
try and from the US Department of Defense, and realized
that the research community is not even speaking about the
same sorts of objects that they are concerned about. These
organizations design, implement, and test massive embed-
ded systems of systems.

Furthermore, these sorts of systems of systems are by no
means unique to the military or to the automotive indus-
try. Embedded systems are in every industry, and they are
increasingly driven by analog inputs such as pulses, or elec-
trical inputs, or a continuously variable mechanical action,
all of which are far removed from anything the end-user is
aware of. For example, one might have to test an automobile
fuel injection software system, which responds to another
system that reacts to a driver’s depressing a gas pedal.

Testing researchers first have to learn how to test these
embedded systems for functionality, even if the system un-
der test is a flight control system for an airplane that is
still under design, or a satellite yet to be built. How can
one test the functionality of an implanted device that emits
a signal or injects some medication into a patient’s blood-
stream when certain conditions occur, provided that other
conditions have not occurred?

Once the functional testing has been completed, how can
one assure the airplane manufacturer or the satellite designer
that the embedded systems are not vulnerable to attack,
that they work under all sorts of environmental conditions,
that they work when inputs are outside the expected ranges,
and that they can meet performance goals, safety regula-
tions and reliability requirements? This is where the re-
search community needs to be headed because this is where
the world is heading. And clearly the research community
should be arriving ahead of the systems that are being built
in industry. Research should be guiding development, but in
software engineering, and particularly software testing, that
is often not the case.

Education, Training, Experience
This section describes what we believe to be the three most
important factors in raising the level of software quality
and producing a future generation of qualified software en-
gineers. Advances in design, implementation, and valida-
tion research are obviously important, but none of them will
be ultimately useful without well-trained practitioners who
know how to distinguish good design from bad, and who can
make intelligent choices of appropriate implementation and
validation techniques.

The elements of software engineering education include at
least the following:

• solid grounding in fundamentals of computer science,
including appropriate mathematics

• the importance of working in teams, and how to take
advantage of different team members’ skills and exper-
tise

• understanding of all the key factors that might be rel-

evant for a system, when each is appropriate, and how
to evaluate them. These factors include such things as

– risk

– safety

– performance

– reliability

– correctness (and this might not be the most im-
portant)

– ease of use, clarity

– ease of modification

• hands-on study of real systems, to provide experience,
and to instill awareness of the difficulties encountered
while systems are being built, tested, and operated

In many engineering disciplines, it is usual for students to
have internships which are essentially apprenticeships, where
they learn by working with experienced professional engi-
neers and get real hands-on training. Such programs fre-
quently extend an undergraduate engineering degree from
four to five years. In many fields, engineering graduates
cannot legally call themselves an engineer without passing
a licensing exam, and that often has a work experience re-
quirement. For example, it’s not enough to know the theory
of building a bridge if you want to be a civil engineer; you
also have to work with people who design and build them
and are experienced enough to mentor interns.

In the United States, these sorts of internships are not
the norm in software engineering, and an exam is generally
not required for someone to call himself or herself a software
engineer. It is not clear that there are any requirements at
all that go with the title.

What sort of training does a software engineering educator
need? Many people teaching software engineering courses
have computer science degrees, which presumably prepares
them to teach computer science fundamentals, but they lack
real engineering experience. In many cases, software engi-
neering faculty and researchers have never themselves en-
gineered software or specified, designed, tested or assessed
any real software systems. Therefore, the educators and
researchers are talking about how they imagine people engi-
neer software, and what they believe the significant problems
are, or what they have learned by reading papers written
by researchers without first-hand experience. And so stu-
dents are learning from people who may be very smart and
knowledgeable about theory, but without any real pragmatic
experience.

Therefore, it’s important to consider how to assure that
our software engineering faculty are qualified to actually
teach more than foundational courses in the field. One pos-
sible solution is for funding agencies to offer summer or even
year-long positions for software engineering faculty to work
at industrial development and testing organizations. The
companies will probably gain very little immediate, concrete
benefit from such visitors, and that is why funding agen-
cies should underwrite their expenses. We are not speaking
about a professor spending the summer or a sabbatical work-
ing in an industry research lab - that seldom involves really
learning how practitioners specify, design, build or test soft-
ware, since in many industry labs, researchers are just as far
removed from practitioners as academics are.

274

The Big Picture and How to Get There
In the future we will see more and more embedded software
systems, increasingly larger systems of systems, systems that
require synchronization with other systems, systems of mo-
bile devices, and safety-critical systems that control all sorts
of medical devices and procedures. Since these systems are
embedded and depend on other systems, and do not run
on devices that look like computers, and are not necessarily
directly responding to stimuli controlled by the end user,
new ways of testing them need to be developed. This is a
significant research challenge.

In most engineering fields, systems are specified using en-
gineering models, which every engineer of the relevant type
has been taught to create and understand. That is definitely
not the case with software engineers, and modeling needs
to be included as a standard tool or skill that every soft-
ware engineer routinely learns as part of their education. In
addition, since embedded software systems are increasingly
common and widespread, software engineers need to learn
how to simulate systems.

Simulation is a standard tool in many other engineering
disciplines, but it is rarely taught to software engineering
students. If you are testing a component of a larger system
that has not yet been built, the only alternative might be
to test it by doing simulations. Other circumstances under
which dynamic testing cannot be done at a particular stage
of development include software systems embedded in a de-
vice that might have disastrous safety consequences if the
software were to fail. This might include things like soft-
ware embedded in medical devices or airplanes. It might
be considered too risky to dynamically test the system un-
til it has been compellingly shown to function properly, and
the most compelling evidence might come from simulations.
While simulation is not a substitute for significant dynamic
testing, it certainly does offer the possibility of providing
evidence of potential flaws in the system before the airplane
is ready to fly, for example.

Summary
Far-sighted individuals have called for more attention to en-
gineering principles and sounder education for software en-
gineers for many years [1, 2, 3, 4, 5]. We have tried to offer
some concrete suggestions for how we might improve soft-
ware engineering education, by identifying a number of skills
that every software engineering student and faculty should
have learned, as well as hands-on training that they should
have had. We have also pointed out the following areas that
the research community needs to focus on to meet the de-
mands of the types of systems that are being built today
and will increasingly be built in the future.

• testing embedded systems

• testing properties other than functionality, including
performance, safety and security

• simulation

• industrial grade empirical studies

• easy-to-use tools that implement testing techniques

1. REFERENCES
[1] Boehm, B., Helping students learn requirements

engineering, Proc. Software Engineering Education,
1996, pp. 96 -97

[2] Boehm, B. and Port, D., Educating software
engineering students to manage risk, Proc. Int. Conf
on Software Engineering, 2001.

[3] Ludewig, J., Software Engineering in the year 2000
minus and plus ten, in R. Wilhelm (ed.): Informatics:
10 years back, 10 years ahead, Springer- Verlag,
Berlin, Heidelberg, 2001, pp. 102 - 111.

[4] D. Parnas, Software Engineering: An Unconsummated
Marriage, CACM, Vol. 40, No. 9 (Sept. 1997), p. 128

[5] D. Parnas, Software engineering programs are not
computer science programs, IEEE Software, Vol. 16,
No. 6, Nov-Dec 1999, pp. 19-30

275

