
Text to Software

Developing Tools to Close the Gaps in Software Engineering

Walter F. Tichy
Karlsruhe Institute of Technology

Am Fasanengarten 5
Karlsruhe, Germany

walter.tichy@kit.edu

Sven J. Koerner
Karlsruhe Institute of Technology

Am Fasanengarten 5
Karlsruhe, Germany

sven.koerner@kit.edu

ABSTRACT
Software development relies heavily on manual processes for
transforming requirements into software artifacts such as
models, source code, or test cases. Requirements are the
starting point for these transformations, and they are typi-
cally written in natural language. However, hardly any auto-
mated tools exist that translate natural language texts into
software artifacts.

We propose to adapt recent advances in natural language
processing and semantic technologies to generate UML mod-
els, test cases, and perhaps even source code, from natural
language input. Though earlier efforts in automatic pro-
gramming had limited success, we are now in a situation
where extracting meaning from text has made substantial
progress. For example, encouraging results for generating
UML models from textual requirements have been achieved.
It might even be possible to generate executable test cases.
An intermediate step would be to generate tests from API
documentation (which would also be a useful capability in
itself). An even greater advance would be to automate rote
coding.

In all of these cases, entirely new classes of software tools
would be needed to extract and process the semantics in-
herent in natural language texts, augment them with tacit
knowledge from ontologies and domain models, and, where
necessary, ask humans to clarify ambiguities.

Though speculative, a determined, long-term effort in trans-
lating text to software could automate and accelerate soft-
ware development to an unprecedented degree.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.10 [Software Engineering]: Design—Methodologies,
Representation

General Terms
Design, Documentation, Experimentation, Theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

Figure 1: The Software Development Process Lacks
Tool Support in Requirements Engineering

Keywords
Requirements Engineering, Automation, Model Extraction,
Test Case Generation

1. INTRODUCTION
At its core, software development involves the translation

of human intent into software (compare Fig. 1). Usually, a
skilled analyst is needed to elicit this intent; the result is a
requirements document. This document is written in natu-
ral language to make it easy for stakeholders to understand.
Class diagrams, state diagrams, and other models are ex-
tracted from the requirements, also by hand. The models
are refined into software designs, which are then translated
into source code. Test cases must be written. All of these
tasks are manual. Only the final step, translating source
code into executable code, is fully automated. Software en-
gineering research should seek to automate more of these
manual tasks.

Since all software development processes hinge on require-
ments, we think it paramount that tools are able to extract
information from this source. This means that natural lan-
guage processing capabilities are needed, because 95% of
requirements are recorded in natural language [20]. Later
on, one might add speech input, but for now, textual input
is challenging enough.

A number of researchers have demonstrated independently
that extracting UML models (class diagrams, state diagrams,
and sequence diagrams) from natural language text is feasi-

379

Figure 2: Iterative Process in RE

ble [9, 23, 5]. Additional research has shown that some of the
ambiguities inherent in natural language requirements can
be identified [6, 11, 14] and corrected automatically by using
ontologies [16, 24]. Much more needs to be done, but from
these results we conclude that more of the translation pro-
cesses could be automated. In particular, it might be pos-
sible to extract test cases from requirements. By knowing
how requirements were (machine-) translated into classes,
methods, state machines, and sequence diagrams, it might
be possible to produce source code for simple tests. How-
ever, generating test cases is a big leap; we therefore propose
to start with something simpler, i.e., the generation of test
cases from API descriptions, such as Javadoc. The advan-
tage of API documentation is that it is more concrete than
requirements. Furthermore, generating test cases form API
documentation would be a valuable capability in itself.

An even greater leap would be to generate source code
statements. We think that generators will not be able to in-
vent complex algorithms in the near future, but some amount
of rote coding might be possible, in particular if state ma-
chines, sequence diagrams, and temporal relations can be
extracted from detailed requirements. Sequence diagrams
could be used to produce code skeletons, for instance.

A brief note about “automatic programming” is appro-
priate. The term describes a type of programming where
software is produced by machine. David Parnas [22] traced
the history of the term and concluded that “automatic pro-
gramming has always been a euphemism for programming
in a higher-level language than was then available to the
programmer.” In fact, one of the early compilers was called
Autocode. Perhaps a generator that produces software from
text or spoken input will be the ultimate autocoder.

Today’s IDEs, generative techniques, “wizards”, and other
approaches automate aspects of software development, but
they perform relatively mundane bookkeeping or genera-
tion tasks or are extremely narrow in application domain.
Cheng and Atlee call for better tools and more automa-
tion in requirements engineering [3]. Nuseibeh and Easter-
brook also demand new technologies that bridge the gap
between requirements elicitation approaches based on con-
textual inquiry and more formal specification and analyses
techniques [21]. What is missing is extracting meaning from
requirements and augmenting that with tacit knowledge.

Natural language processing (NLP) has advanced to a
point where extracting meaning is now practicable. Juraf-
sky’s and Martin’s book [10] provides an extensive overview
of the state of the art. We use several of their NLP tools,
such as parser, parts-of-speech taggers, and named entity
recognizer. For tacit knowledge, ontologies are a promis-
ing source. Cyc [4] is a huge ontology that encodes a large

Figure 3: Automating the Software Development
Process

body of world knowledge as well as some domain knowl-
edge. The latest release of Cyc includes 500, 000+ concepts
and 5, 000, 000 assertions (facts and rules). It uses some
26, 000+ relations that interrelate, constrain, and (at least
partially) define the concepts. Furthermore, note that re-
quirements typically introduce new concepts. Interestingly,
Kof describes the automated building of domain specific on-
tologies directly from requirements text [15] . Thus, powerful
tools are in place. We agree with Kof that NLP is ready for
requirements engineering.

Automatically generating software artifacts from natural
language descriptions would enable workers with less exper-
tise than today to take part in the software development
process. It would permit faster, more reliable, and more
deterministic software development. ”Text to Software” is
a long-term vision that will take decades to realize. Given
some early successes, it is a goal that seems attainable and
might yield deep insights into how software is actually con-
structed.

In the following, we expand on the idea of generating
models and test cases from text and discuss an important
methodological issue (benchmarking).

2. MODELS FROM TEXT
Extracting models from text is all about semantics; the

syntax of text is not important. We extract semantic infor-
mation from text using an extended set of Fillmore’s the-
matic roles [8]. In a first approach, requirements texts had
to be annotated with these roles by hand. This approach al-
lowed us to determine the semantic content that was needed
for generating software models, without having to solve the
general natural language processing problem. As a next
step, we are now investigating how the appropriate thematic
roles can be discovered automatically [19].

Our approach to automating natural language require-
ments processing (NLRP) is depicted in Fig. 3. First we
improve the textual specification itself (1), since many flaws
in software development result from faulty requirements.
Changes are made with customers’ approval; working with
text makes this easy for the customers. The resulting spec-
ification is then translated into an internal graph structure
that is machine processable (2). The internal graph is based
on the semantics of the text, not its syntax. Our extraction
tool then generates UML models (3). These models could
be passed to model driven architecture (MDA) tools (4).
The idea of MDA is to create executable code from UML
models (5).

2.1 Automatic Specification Improvement
It is well-known that requirements documents are often

incomplete, inaccurate, faulty, or contradictory. Today’s re-
quirements engineering tools (for an extensive list see Vol-
ere [25]) offer modeling and management functions, but can

380

Figure 4: SaleMX Syntax: Semantics over Syntax

hardly cope with the content and meaning of natural lan-
guage specifications. Therefore, analysts must inspect spec-
ifications for problems and resolve them in dialog with cus-
tomers. Step-by-step rules [11, 2, 7] have been proposed for
improving specifications manually.

Tools such as RESI [16] and RAT [24] help the analyst
identify some of these problems. RESI relies on Cyc for
supplying world knowledge, i.e. common sense to make deci-
sions. As an example, consider the requirements statement
Username and password are entered. Here it is unclear
who enters the password and where. With Cyc, RESI iden-
tifies the word “enter” as an incompletely specified process
word and asks the user for clarification. Thus, RESI helps
by identifying problem spots, but it does not replace the
human decision maker except in clear cases.

2.2 Creating UML Models
Figure 4 shows two example sentences describing the same

situation. Both sentences are syntactically quite different,
but describe exactly the same facts. The two sentences re-
sult in the same UML model, shown underneath. We use
semantic annotations with thematic roles which, in this ex-
ample, describe a composition: OMN (Omnium: the whole)
and PARS (Pars: parts of it). A collection of 60 thematic roles
and associated transformation rules generate UML models
directly from text.

During the requirements engineering part of software en-
gineering, there will always be parts that require user inter-
action. These parts cannot be automated, but a tool should
limit user interaction to a minimum and automate all simple
or tedious work. Our research prototypes indicate that such
tools are feasible [9, 18, 17].

2.3 Enabling Round Trip Engineering
The process of requirements engineering is iterative. As

depicted in Fig. 21, the stakeholder and the analyst need to
synchronize their understanding of the project many times
before the actual software can be developed . Also, the ef-
fort of synchronization sometimes excels the effort of the
actual implementation. This is one of the main reasons why
software requirements, implementation, and documentation
underly an erosion process. Considering the fact that re-
quirements specifications often found the base for legally
binding contracts, we postulate the necessity to maintain the
connection between Software Lifecycle Objects (SLOs) [1] by
offering a complete round trip engineering approach.

Bohner and Arnold describe a SLO as any entity used in
the software development cycle. It has dependencies to and
from other SLOs. A SLO can be anything: a requirement
statement, a model element, a segment of code, a test case,

1Figure according to Dr. Martin Glinz, University of Zürich

Figure 5: Software Lifecycle Objects

etc. SLOs exist during the lifetime of a product and have
n− ary relations with each other. An example can be seen
in Fig. 5.

Vertical dependencies describe the mutual connection of
SLOs within the same type of SLO, such as requirements,
models, code, and test cases. Horizontal dependencies show
that each SLO can be coupled with one or many other SLOs
of other vertical types. Creating and maintaining these de-
pendencies is costly. Helping the software analyst, architect,
and stakeholder to maintain the connections among require-
ments, models, code, and tests would improve software de-
velopment dramatically. For example, changes in the mod-
els should be reflected back in the requirements. Changes
in the code might cause changes to test cases, models, and
specifications.

One of our current research projects aims at feeding UML
model changes back into the existing textual requirements.
The changes are highlighted in the text, so the analyst can
spot them easily. For example, Fig. 6 shows two UML mod-
els. The model on the left is the original model created
from the text underneath it. The model on the right de-
picts the altered model. The text shown in grey shows the
automatic changes that were performed on the specification
in response to the model changes on the right. This tool
connects the software model to the actual software require-
ments specification and keeps the two SLOs consistent. The
tool provides valuable help in the iterative change process
with stakeholders.

3. TEST CASES FROM TEXT
Generating test cases from text is much more speculative

than generating models from text, as we have no prelimi-
nary results to support our arguments. However, it appears
plausible that as soon as we bring (automated) semantic
knowledge into the software development process, we may
be able to automate other steps.

3.1 Test Cases from APIs
Test case generation is an active research area. Existing

techniques use code or formal specifications, but none work
off natural language specifications, even though that is by far
the most common form of API specification. For example,
consider the API of a stack in java.util.stack. A useful test
would push elements on the stack and then pop them off
and check for LIFO order. At present, this would be a test
that is exceedingly difficult to generate. Using the textual
API specification and the world knowledge of ontologies, it
might be possible to derive such a test in the future.

For example, the ontology Cyc contains knowledge about
data structures and describes a stack as an organized pile
with its contents lying on top of another. It also defines

381

Figure 6: Changes in UML Alter Specifications

LIFO and FIFO order. By exploiting this information, it
might be possible to generate useful tests, not only about
stacks but other container data structures as well. In par-
ticular, one would have to use the concept of storage to
generate tests that insert data, extract it again, and com-
pare the result. To make progress in this difficult area, one
should start with simple cases, such as tests that exercise
setters and getters, and then progress to more difficult se-
mantics.

3.2 Test Cases from Models
Some research tools already create test cases from mod-

els, such as UML models [12]. Since we generate models from
text, we should be able to use such test generation tools di-
rectly. Understanding the concept of data structures and
knowing the relationships of the different entities (as given
by UML classes), one could even create test oracles. Again,
this might work by utilizing the model and additional infor-
mation from ontologies. We envision transformation rules
that create test cases directly from enriched models and ad-
ditional constraints expressed in the requirements text.

This process could be improved using domain-specific on-
tologies. Domain-specific ontologies allow the discovery of
semantics with higher precision and detail than general world
knowledge.

3.3 Extracting Timelines
Discovering temporal constraints (before/after relations)

in textual specifications is already partly possible. UML
state or sequence charts are generated from these constraints.
This information could be used for generating assertions that
check that the ordering constraints are actually obeyed dur-
ing execution.

For example, a WrongOrderException() would be thrown
whenever the execution sequence does not follow the order
given in the text or API. This part would improve the auto-
matic exception coding and handling and support develop-
ers to not miss (timely) constraints. Again, generating test
cases from text is an extremely difficult problem. Whether
workable methods will be discovered cannot be predicted
with any certainty at this time.

4. BENCHMARKS
Benchmarks will be important for progress in this area.

A benchmark for natural language requirements processing
(NLRP) would contain requirements documents of graded
difficulty. Each requirement document would be accompa-
nied by a ”solution”, i.e., a list of which model elements
should be extracted, what inaccuracies or ambiguities are

present, or what aspects should be tested. Independent
teams can then apply their NLRP tools to the benchmark
and measure recall and precision objectively. Initially, re-
searchers would start with short and simple requirements,
and over time the documents would become longer and more
difficult to handle. As with all benchmarks, they need to
evolve in order to prevent overfitting.

Benchmarks help generate quantifiable, objective results
and foster a competitive climate that accelerates progress.
Benchmarks have been extremely successful in driving re-
search in computer architecture, speech recognition and trans-
lation, robotics, databases, SAT solving, and other areas. A
particular successful example is the DARPA challenge for
robotic vehicles. In all of these cases, benchmarks resulted
in swift and substantial progress. Successful techniques were
quickly adopted by other teams and improved upon. By
providing benchmarks for NLRP, the research community
might achieve similar progress. We have already begun to
collect examples of requirements documents and will make
them available on a website. A first version of the website
is available [13].

It turns out that real requirements are surprisingly diffi-
cult to find. Textbooks contain few examples, and they seem
to be made up by the authors or copied from other authors,
who also made them up. Real requirements are quite differ-
ent from textbook examples, but we also found that com-
panies are reluctant to make their requirements documents
publicly available. Furthermore, research in NLRP often use
artificial, strongly restricted languages. There seems to be a
need for realistic requirements with which to improve tools.

5. CONCLUSIONS
Any user of the web has noticed that search engines can

translate web pages. These translations are not perfect, but
surprisingly useable. On mobile phones, speech-to-speech
translators are now available (see for instance Gibbigo in
Apple’s Appstore). A user of the translator speaks into the
phone in English and the phone produces a spoken Spanish
translation; the reverse direction works as well. This tech-
nology seems to be straight out of a science-fiction book,
yet it is real and improving rapidly. Why should automatic
translation of requirements to software artifacts not be pos-
sible? At present, machine translation relies on statistical
methods, and perhaps these methods are not applicable to
software because the statistical basis is too small. Thus,
researcher will have to use other techniques, such as ontolo-
gies, but we also expect the statistical basis to improve with
time. Early successes with generating models from text are
quite encouraging. Software engineering researchers should
take note of the advances in machine translation and seman-
tic technologies and capitalize on them. Generating software
from textual description would without a doubt be a signif-
icant step forward.

382

6. REFERENCES
[1] S. Bohner and R. Arnold. Software Change Impact

Analysis. IEEE Computer Society Press, Los
Alamitos, CA, USA, 1996.

[2] M. Ceccato, N. Kiyavitskaya, N. Zeni, L. Mich, and
D. M. Berry. Ambiguity identification and
measurement in natural language texts.

[3] B. H. C. Cheng and J. M. Atlee. Research directions
in requirements engineering. In Proc. Future of
Software Engineering FOSE ’07, pages 285–303, 23–25
May 2007.

[4] Cycorp Inc. ResearchCyc. http://research.cyc.com/.

[5] D. K. Deeptimahanti and R. Sanyal. An innovative
approach for generating static UML models from
natural language requirements. In Advances in
Software Engineering, volume 30 of Communications
in Computer and Information Science, pages 147–163.
Springer Berlin Heidelberg, 2009.

[6] C. Denger, D. M. Berry, and E. Kamsties. Higher
quality requirements specifications through natural
language patterns. volume 0, page 80, Los Alamitos,
CA, USA, 2003. IEEE Computer Society.

[7] C. R. . die SOPHISTen. Requirements-Engineering und
-Management. Carl Hanser Verlag, 4 edition, 2006.

[8] C. J. Fillmore. Toward a modern theory of case. In
D. A. Reibel and S. A. Schane, editors, Modern
Studies in English, pages 361–375. Prentice Hall, 1969.

[9] T. Gelhausen and W. F. Tichy. Thematic Role based
Generation of UML Models from Real World
Requirements. In First IEEE International Conference
on Semantic Computing (ICSC 2007), volume 0,
pages 282–289, Irvine, CA, USA, Sept. 2007. IEEE
Computer Society.

[10] D. Jurafsky and J. H. Martin. Speech and Language
Processing: An Introduction to Natural Language
Processing, Computational Linguistics and Speech
Recognition. Prentice Hall series in artificial
intelligence. Prentice Hall, Pearson Education
International, Englewood Cliffs, NJ, 2. ed., [pearson
international edition] edition, 2009.

[11] E. Kamsties, D. M. Berry, and B. Paech. Detecting
Ambiguities in Requirements Documents Using
Inspections. In Proceedings of the First Workshop on
Inspection in Software Engineering (WISE’01), pages
68–80, 2001.

[12] M. Kaplan, T. Klinger, A. M. Paradkar, A. Sinha,
C. Williams, and C. Yilmaz. Less is more: A
minimalistic approach to uml model-based
conformance test generation. Software Testing,
Verification, and Validation, 2008 International
Conference on, 0:82–91, 2008.

[13] KIT. The NLRP Benchmark Homepage, 2010.
http://nlre.wikkii.com.

[14] N. Kiyavitskaya, N. Zeni, L. Mich, and D. M. Berry.
Requirements for tools for ambiguity identification
and measurement in natural language requirements
specifications. Requir. Eng., 13(3):207–239, 2008.

[15] L. Kof. Natural Language Processing for
Requirements Engineering: Applicability to Large
Requirements Documents. In Automated Software
Engineering, Proceedings of the Workshops, Linz,
Austria, Sept. 2004.

[16] S. J. Körner and T. Brumm. RESI - A Natural
Language Specification Improver. International
Conference on Semantic Computing, 0:1–8, 2009.

[17] S. J. Körner and T. Brumm. Natural Language
Specification Improvement with Ontologies.
International Journal of Semantic Computing (IJSC),
03(04):445–470, 2010.

[18] S. J. Körner and T. Gelhausen. Improving Automatic
Model Creation using Ontologies. In Knowledge
Systems Institute, editor, Proceedings of the Twentieth
International Conference on Software Engineering &
Knowledge Engineering, pages 691–696, July 2008.

[19] S. J. Körner and M. Landhäußer. Semantic Enriching
of Natural Language Texts with Automatic Thematic
Role Annotation. NLDB 2010, June 2010.

[20] L. Mich, M. Franch, and P. N. Inverardi. Market
research for requirements analysis using linguistic
tools. Requirements Engineering, 9(1):40–56, Feb.
2004.

[21] B. Nuseibeh and S. Easterbrook. Requirements
engineering: a roadmap. In ICSE ’00: Proceedings of
the Conference on The Future of Software Engineering,
pages 35–46, New York, NY, USA, 2000. ACM Press.

[22] D. L. Parnas. Software aspects of strategic defense
systems. Commun. ACM, 28(12):1326–1335, 1985.

[23] V. S. Sharma, S. Sarkar, K. Verma, A. Panayappan,
and A. Kass. Extracting high-level functional design
from software requirements. In Proceedings of the 2009
16th Asia-Pacific Software Engineering Conference,
APSEC ’09, pages 35–42, Washington, DC, USA,
2009. IEEE Computer Society.

[24] K. Verma and A. Kass. Requirements analysis tool: A
tool for automatically analyzing software requirements
documents. In 7th International Semantic Web
Conference (ISWC2008), October 2008.

[25] Volere. List of requirement engineering tools, 2009.
http://www.volere.co.uk/tools.htm.

383

