
Top Ten Ways to Make Formal Methods for HPC Practical

Ganesh L. Gopalakrishnan and Robert M. Kirby
School of Computing, University of Utah, Salt Lake City, UT 84112
http://www.cs.utah.edu/fv – {ganesh,kirby}@cs.utah.edu

ABSTRACT
Almost all fundamental advances in science and engineer-
ing crucially depend on the availability of extremely capable
high performance computing (HPC) systems. Future HPC
systems will increasingly be based on heterogeneous multi-
core CPUs, and their programming will involve multiple con-
currency models, with the message passing interface (MPI)
serving as the dominant model for many years. These devel-
opments can make concurrent programming and optimiza-
tion of HPC platforms and applications very error-prone.
Therefore, significant advances must occur in verification
methods for HPC. We present ten important formal meth-
ods research thrusts that can accelerate these advances.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal methods; Validation; D.2.2 [Software En-
gineering]: Design Tools and Techniques—Software Libraries

General Terms
Performance, Reliability, Verification

Keywords
MPI, High Performance Computing, Dynamic Verification

1. FORMAL METHODS AND HPC
High performance computing (HPC) is one of the pillars

supporting virtually all of science and engineering. For the
long term viability of this area, it is absolutely essential that
we have HPC platforms that are easy to program and come
with incisive verification tools that help application devel-
opers gain confidence in their software. Unfortunately, the
current situation is far from these ideals. In § 2, we propose
ten research thrusts that are essential to avert a debugging
crisis in HPC, and substantiate our remarks. In the re-
mainder of this section, we describe the context and our
motivations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

The FV and HPC Communities Ignoring Each Other:
Virtually all HPC applications are written using the Message
Passing Interface (MPI, [1]) and are run on message passing
distributed memory machines. MPI is the lingua franca of
parallel computing in HPC for very good reasons. Its design
involved both machine vendors and application developers.
The designers of MPI made sure that MPI programs will
run well on a huge variety of platforms and also that a vari-
ety of parallel applications can be efficiently coded up in it.
While MPI appears to be large, this size seems unavoidable
if one considers the variety of machines it runs on, and the
variety of applications it supports. It is well known that
each application/machine architecture requires a few dozen
of the over 300 MPI-2 functions—and it is a different dozen
for each such pair.

All this aside, MPI programming targeting high efficiency
is very error prone. All the fine control that MPI provides
programmers to ensure high efficiency can also be easily mis-
used, resulting in nasty code level bugs such as deadlocks
and resource leaks. Barring a few exceptions [2], debug-
ging challenges associated with MPI programming have not
been very much discussed in the formal verification litera-
ture. The primary debugging approach for MPI is still one of
running an MPI application on a specific platform, feeding it
a collection of test inputs, and seeing if anything goes wrong.
This approach may seem to work—largely due to the unifor-
mity of the platform hardware, libraries, and programming
styles employed in this area. By avoiding aggressive styles
of MPI programming and staying within safe practices, to-
day’s HPC application developers can often compensate for
the lack of rigorous testing and reasoning approaches.

Unfortunately, this placidity brought by self imposed dis-
cipline on part of MPI programmers together with the knee-
jerk reaction of the Computer Science (CS) research commu-
nity against anything that appears to be large (such as MPI)
has lead to HPC application developers and the CS research
community ignoring each other. HPC application writers
can simply learn MPI and a few programming languages,
then spend most of their time focusing on their application-
area sciences (such as Physics and Chemistry). For them,
even the word “verification” often means does one’s algo-
rithm and its encoding match Physics?—i.e, code correct-
ness is often not the primary question. The “CS side” also
goes about developing formal methods for programs more
familiar to it—such as device drivers, flight software, and
floating point hardware. Bugs faced by HPC platform and
application developers are often attributed to the use of
baroque libraries such as MPI and languages like C and

137

Fortran. People expressing these views seem not to real-
ize that the large size of libraries such as MPI is due to
its careful design to run on a huge variety of platforms and
applications. While formal methods for verifying unmod-
ified concurrent programs were being demonstrated in the
late 90s (e.g., Verisoft [3] by Godefroid), none of these ideas
have influenced MPI program verification tools.

The consequences of this isolation are quite shocking. We
once encountered a bug that got triggered only when our
program was configured for exactly 128 processes—not on
lower or higher process counts. Using crude debugging meth-
ods, we finally traced this bug to the MPI library. In another
instance, we applied decades old model checking methods to
a published locking protocol and unearthed two serious flaws
[4]. Other MPI programmers have similar (or worse) inci-
dents to report. Considering that Petascale machines being
built all around the world will consume about a million dol-
lars worth of electricity a year—not to mention other costs
(personnel, opportunity costs of delayed simulations) that
are even higher—the detrimental effects of these ad hoc de-
bugging methods become all too apparent.
Neglected Collaboration Coming Home to Roost: A
sea change awaits HPC system designers, application devel-
opers, and CS researchers. There is growing demand for
HPC capabilities coming from every conceivable scientist
and engineer: e.g., biologists conducting cellular level stud-
ies, engineers designing new aircraft, and physicists testing
new theories. Future HPC systems will be required to de-
liver amazing computational (FLOP) rates at low energy-
delay product values never before attained. They have to
do so on multi-core platforms that have to be programmed
properly in order to deliver higher overall performance. Un-
fortunately these platforms will be comprised of highly het-
erogeneous ensembles of CPUs and GPUs which will demand
inordinate amounts of programming effort. HPC application
developers—once happy in their“MPI world”and focused on
their area sciences—will now have to employ combinations
of libraries including OpenMP, MPI, and CUDA/OpenCL
[5, 6]. MPI will remain the dominant API for many years
due to the huge investment in MPI programs and tools. Un-
fortunately, there are no good methodologies that help guide
hybrid programming of this nature.

If CS researchers had any excuses to ignore HPC, even
these must now prove to be baseless because HPC has crept
into mainstream CS through a growing list of application
areas and devices such as computer games, iPhones with
GPUs, and desktop supercomputers. CS researchers cannot
declare that “ad hoc combinations of MPI, OpenMP, and
OpenCL” must cease to exist. These well proven APIs with
a large user base and proven efficacy will continue to be used
in various combinations. The severe weaknesses associated
with the conventional “run and see” kind of testing can no
longer be covered up through safe practices because of the
large variety of APIs in vogue. All the missed dialog be-
tween HPC researchers and CS researchers must therefore
occur within a short span of time. All the coding bugs that
were quietly patched up during HPC projects must now be-
come parts of bug databases and challenge problems to help
bootstrap the necessary formal verification enterprise.
Basis for Our Position Statement: We embarked on ap-
plying FV methods to HPC problems about five years ago,
and to our pleasant surprise, we were met with warm re-
ception! We found that HPC researchers were eager to help

us demonstrate that new algorithms designed using formal
methods can be correct, and also provide insights to outper-
form ad hoc algorithms [4]. Based on our experience, we can
say that there are still much ‘low-hanging fruits’ to be picked
in this area. We have shown in [7] that the core semantics
of complex APIs such as MPI can be formalized in sufficient
detail. In [8, 9], we report on our dynamic verifier for MPI
called ISP and show that specialized dynamic partial order
reduction algorithms for MPI can scale well and help locate
bugs in very large realistic MPI programs.

There are a few others who pioneered work in applying
FV to HPC problems even before us (e.g., [2]). Yet, in
the grand scheme of things, there is an absolutely alarm-
ing shortage of researchers interested in FV and HPC who
also pay sufficient attention to today’s dominant paradigm
(namely MPI). These facts are painfully apparent in many
ways. For example, there are hardly any papers on formal
methods for HPC problems in today’s leading FV confer-
ences; the vast majority of papers are confined to trendy
topics such as Java Concurrency or Transactional Memo-
ries). Also, FV researchers wanting to publish in leading
HPC conferences find very few conferences set up to handle
technically deep presentations. Clearly, we need to do far
better if we are to urgently build a community of FV and
HPC researchers who collaborate. Given the critical mass
around MPI, this community must include sizable repre-
sentation of FV researchers dealing with MPI. Also, given
the huge momentum behind GPUs, approaches based on di-
alects such as CUDA [6] and OpenCL [5] must also not be
ignored. Even in this area, with a few exceptions [14, 15]
there is not much activity from formal methods researchers.

Based on our experience, we can now summarize ten im-
portant thrusts in § 2.1 through § 2.10 that, if not under-
taken urgently, will prove detrimental to growth in HPC. In
each section, we present evidence to back up our statements
through our recent projects.

2. OUR POSITION STATEMENTS

2.1 Support FV around well-established APIs
Formal methods researchers tend to prefer simple par-

simonious APIs, dismissing well established APIs such as
MPI and OpenMP as overly rich and poorly designed (i.e.,
“hairy”). The real danger of going this route are several.
First, it would be nearly impossible to find large meaning-
ful examples that employ these minimalist APIs. Without
demonstrating FV results on large problems, the HPC com-
munity will not be swayed in favor of FV methods. They
may also get thoroughly disenchanted about the reach of FV
methods and the unhelpful disposition of FV researchers.

Second, dealing with real APIs such as MPI actually en-
riches formal verification methodologies and algorithms. Mod-
ern APIs such as the multicore communications API (MCAPI,
[10]) have, for instance, begun to incorporate many of the
same constructs pertaining to message passing. True inno-
vation is almost always sparked by complexity born out of
genuine need than artificially mandated parsimony.
Justification: We started our work on formalizing MPI
unsure of how far we could progress. Over a progression
of versions, we managed to produce a comprehensive for-
mal semantics for 150 of the over 300 MPI-2 functions [7] in
TLA+. This semantics proved useful for putative query an-
swering (users asking questions about scenarios of usage of

138

the API [11]) but not to design a dynamic verification algo-
rithm. Our breakthrough came when we understood how
to formulate the happens-before relation underlying MPI.
ISP and its entire analysis—including how it models concur-
rency/resource interactions is based on this happens-before
model. Recently, we have been able to apply these lessons
while building a verifier similar to ISP for MCAPI [10].

A strong caveat while programming in a multi-API world
is that designers will do anything that is not explicitly pro-
hibited. Recently, a group reported to us of a mysterious
“hang” that they experienced when they invoked kernels on
multiple GPUs using OpenMP threads. It was lucky that
they encountered this problem; it could have been worse if
they found things “seemingly working,” only to hand a fail-
ure to someone else who later ports the code. These facts
strongly suggest the need for modeling well-established APIs
as well as their interactions through formal methods.

2.2 Devise point solutions
While there have been some attempts at standardizing

formal verification tools around common intermediate forms
(e.g., tools such as CHESS [13] can verify all programs that
bind to the .NET API), in general we believe that point
tools are necessary for different APIs. Codes involving some
APIs are best modeled and handled using symbolic meth-
ods (e.g., our PUG tool [15] for CUDA) while others are best
handled using dynamic verification methods and specialized
search methods (e.g., the ISP tool). Even for dynamic veri-
fication tools, one has to engineer different dynamic partial
order reduction methods to realize a significant amount of
interleaving reduction.
Justification: We have recently contributed “PUG,” the
first comprehensive formal analysis tool for CUDA based on
SMT solving [15]. The approach taken in PUG (symbolic
analysis) and that taken in ISP (dynamic reduction based
verification) are examples of different solutions working well
for different APIs. Likewise, dynamic interleaving reduction
algorithms that best handle MPI and those that best handle
shared memory threads (e.g., our tool Inspect [16])are quite
a bit different. The efficiency gains due to point-solutions
that handle particular APIs well are well worth the effort of
developing separate tools.

2.3 Design API implementations supporting FV
Tools such as Verisoft, CHESS, and ISP must be able to

transfer control to the verification scheduler when API calls
are invoked, examine the execution history thus far, and
compute as well as enforce essential interleavings that have
not been manifested thus far. Unfortunately, many API de-
signs and implementations make these steps extraordinarily
difficult. While many high-efficiency OpenMP implemen-
tations are being developed, few of them provide hooks to
control the underlying threads/tasks created by the runtime.
As other examples, we had to employ many complex (and
error-prone) techniques such as dynamic API call rewriting
[17] or putting in probe loops [10] in our past work. These
steps could easily have been avoided by exporting a few more
verification oriented calls in these APIs. Dynamic verifica-
tion tools built using these extra API calls will also prove to
be more portable across machines. Another very important
API-related fact is that it is insufficient to have just one API
implementation. From the point of view of FV tool devel-
opers, high performance API implementations seldom offer

support for the construction of error monitors because these
implementations do not maintain very much state history.
Also these implementations perform very few (if any) run-
time error checks, thus allowing illegal API call arguments
to go undetected. These can easily lead to inconsistent ex-
ecutions. From the point of view of practitioners, an FV
oriented API alone is insufficient because of its overheads.
Justification: Taking MPI non-deterministic receives as an
example, there are no MPI runtimes that help exercise con-
trol over the MPI sends that these receive commands can
match. By providing extra arguments to an MPI wildcard
receive, it would become possible to influence these deci-
sions. Also, building complementary API implementations
is an important requirement: a high performance API for
final production use, and a verification-oriented API based
on the formal API semantics for use during verification.

2.4 Avoid cross-API interleaving product
While traditional methods such as dynamic partial or-

der reduction have helped conquer complexity by analyzing
only representative interleavings, it is not clear how these
ideas will transfer over to programs that employ multiple
concurrency APIs. For example, if OpenMP code blocks
and MPI code blocks are used in a program, the inter-
leavings in these respective sections—already individually
exponential—can multiply out. While static analysis meth-
ods may often help determine where interleavings matter,
maintaining static analysis tools that handle hybrid concur-
rency models costs considerable engineering time. We be-
lieve that these problems can be best addressed by employ-
ing annotations to assert sharings and dependencies among
code blocks, employing localized checks to ensure that the
annotations are satisfied, and then exploiting the guarantees
provided by the annotations to effect dynamic interleaving
reduction.
Justification: With hybrid concurrency models becoming
the norm, formal methods researchers must now develop
good heuristics to avoid interleaving multiplication across
different APIs. Isolating different code blocks and verifying
them separately is also not an option because of the broad in-
terfaces presented by each such block. An annotation based
approach is important because it is far more practical for
codes that employ multiple concurrency models than auto-
mated sharing inference methods.

2.5 Unify handling of concurrency, resources
It is common to treat correctness and performance sepa-

rately, and to assume that the amount of resources available
only affects performance and not correctness. This is not
true in general: in MPI for example, having extra capac-
ity to buffer messages can often cause additional deadlocks
(of course, in other situations, less buffering increases the
number of deadlocks). Given that concurrent protocols will
be deployed across systems that vary widely in terms of re-
source availabilities, it is crucial to understand such unin-
tended dependencies.
Justification: In recent work [19, 18], we show how having
the single unifying model of MPI happens-before enables us
to analyze concurrent behaviors in the presence of resource
induced behavioral variations. We can for instance analyze
whether a given MPI program is vulnerable to deadlocks
when one tries to increase its performance by increasing
buffering. Now, with hybrid concurrency models resulting

139

from the use of multiple APIs, it is important to have a
good understanding of how the concurrency space changes
with resources. Verification methods must incorporate such
‘resource awareness’ into their analysis.

2.6 Evolve distributed verification algorithms
For a number of reasons (beyond those mentioned in § 2.5),

it is important to formally verify designs configured at higher
ends of the problem scale. For many MPI programs it is sim-
ply impossible to load-up a problem within a uniprocessor,
or expect to obtain enough computing power to run these
problems. Thus we must have truly distributed verification
algorithms where we can employ multiple (e.g., thousands)
of computing nodes, and conduct large-scale HPC applica-
tion verification on such systems. We must also develop
effective methods to conduct coverage/scalability tradeoffs
for use in this setting.
Justification: Our justification is based on recent experi-
ence where we employ a distributed variant of the ISP algo-
rithm. Instead of a centralized scheduler that computes the
MPI happens-before and bases its scheduling on it, we let
MPI processes run on their own nodes, and employ a dis-
tributed algorithm based on logical clocks. We are develop-
ing this algorithm in the context of the tool Distributed Ana-
lyzer of MPI (DAMPI) in collaboration with LLNL [20]. Our
experience strongly supports the need for distributed verifi-
cation methods that provide coverage/performance tradeoffs
and the feasibility of building their implementations. This
may be a productive avenue for using Cloud facilities and
avoid tying up dedicated and expensive HPC clusters, espe-
cially when their high bandwidth and low latencies may not
be necessary for conducting distributed verification.

2.7 Develop formal semantics
One of the biggest “surprises” during parallelization is the

mismatch between answers obtained in a sequential (but un-
acceptably slow) implementation versus that obtained from
a parallel implementation.
Justification: When one imagines problems being coded
up in a mixture of MPI and CUDA/OpenMP/OpenCL, the
number of sources of uncertainty in terms of numerical pre-
cision go up. Even when the compilers are correct and user
code is non-buggy (big “if”s), different answers will arise due
to word width restrictions and associativity changes during
parallelization (in floating-point arithmetic, a + (b + c) 6=
(a + b) + c). Another source of bugs in compilers and hand-
optimized codes is the omission of memory fence instruc-
tions. This can introduce very subtle bugs in iterative algo-
rithms which may yield plausible-looking answers, but are
still inherently flawed due to their use of values that are a
few more time steps behind than intended (example due to
Gropp). Such dangers underscore the importance of hav-
ing a clear formal semantics. Based on such semantics, one
can define what it means for a sequential and a parallel pro-
gram to agree on their results. Some such equivalences are
discussed in [21].

2.8 Develop model-specific reductions
Techniques that help limit state explosion during verifi-

cation are best tailored for the concurrency model at hand.
For example, the preemption bounding approach used in
CHESS [13] is ineffective for MPI because it heuristic is de-
signed to alter the shared memory effects (lost atomicity,

wrong updates of globals, etc.)—not the critical message
matching steps occurring within the MPI runtime. With
hybrid programming becoming the norm, suitable bounding
methods must be devised for each concurrency model.
Justification: In recent work [20], we have developed a
technique that we call bounded mixing to contain dynamic
analysis complexity. The success of this method depends
on the fact that the control flow effects of an MPI non-
deterministic receive do not last beyond a handful of suc-
ceeding operations. Bounded mixing is able to turn a large
exponential space into the summation of much smaller expo-
nential spaces by exploring combinations of non-deterministic
receives only within small sliding windows. This bounding
heuristic is tailored for message passing APIs.

2.9 Distribute well-integrated tools
FV researchers must release their tools well integrated into

widely used tool integration frameworks.
Justification: Through collaboration with IBM, we have
released a front-end for ISP called “GEM” (Graphical Ex-
plorer for Message passing) [12] well integrated into the
Eclipse Parallel Tools Platform (PTP) Version 4.0. We plan
to integrate PUG also within PTP. This situates ISP, PUG
(and soon DAMPI) within easy reach of real designers who
will also find other tools (e.g., performance analyzers) well
integrated within PTP for concerted use. Our ongoing ex-
perience with PTP supports our position on tools.

2.10 Teach using formal tools
Concurrency textbooks must emphasize the conceptual

basics of various concurrency models. Unfortunately, most
existing books almost entirely rely on examples where ad
hoc experiments and their execution outcomes are listed.
Justification: As an example, a scenario pertaining to
MPI’s non-blocking wildcard probes (“one can probe one MPI
send; but match yet another one”) is discussed almost en-
tirely based on examples in the existing MPI documenta-
tion. Our GEM tool integrates a happens-before viewer for
MPI, and in our EuroMPI 2009 tutorial, we demonstrated
that this scenario can be deduced as a formal consequence
of happens-before. We can rein in the complexity of con-
currency education only if we choose to emphasize such fun-
damental deduction rules—as opposed to encouraging pro-
grammers to memorize seemingly disparate facts.

3. CONCLUDING REMARKS
The future success of concurrent system design depends

on the development of formal analysis tools that can handle
hybrid concurrency models. We presented ten field-proven
steps to accelerate this research so that we can place future
HPC system design on a rigorous footing.
Acknowledgments: We are grateful for the timely research
funding from Microsoft through their HPC Institutes pro-
gram, NSF CNS-0824021, CCF-0903408, CCF-0935858, SRC
TJ 1847.001, and SRC TJ 1993. Discussions with Gropp,
Lusk, Thakur, Siegel, and de Supinski are gratefully ac-
knowledged.

4. REFERENCES
[1] MPI 2.1 Standard. MPI Standard 2.1,

http://www.mpi-forum.org/docs/.

[2] Stephen F. Siegel. Model checking nonblocking MPI
programs. VMCAI 2007, pages 44–58, 2007.

140

[3] P. Godefroid. Model checking for programming
languages using Verisoft. In POPL 97, pages 174–186.

[4] S. Pervez, G. Gopalakrishnan, R.M. Kirby, R. Thakur,
and W. Gropp. Formal methods applied to
high-performance computing software design.
Software: Practice & Experience, Vol 40, 23-43.

[5] OpenCL: http://www.khronos.org/opencl.

[6] David B. Kirk and Wen-mei W. Hwu, Programming
Massively Parallel Processors. Morgan Kauffman,
2010.

[7] Guodong Li, Robert Palmer, Michael DeLisi, Ganesh
Gopalakrishnan, and Robert M. Kirby. Formal
specification of MPI 2.0. Science of Computer
Programming, Accepted. Available Online via
ScienceDirect, June 15, 2010.
http://www.sd.ddns.info/

[8] Sarvani Vakkalanka, Ganesh Gopalakrishnan, and
Robert M. Kirby. Dynamic verification of MPI
programs with reductions in presence of split
operations. In Computer Aided Verification, pages
66–79, 2008.

[9] Anh Vo, Sarvani Vakkalanka, Michael DeLisi, Ganesh
Gopalakrishnan, Robert M. Kirby, , and Rajeev
Thakur. Formal verification of practical MPI
programs. In PPoPP, pages 261–269, 2009.

[10] Subodh Sharma, Ganesh Gopalakrishnan, Eric
Mercer, and Jim Holt. MCC - a runtime verification
tool for MCAPI user applications. In Formal Methods
in Computer Aided Design, pages 41–44. IEEE,
November 2009.

[11] Robert Palmer, Michael Delisi, Ganesh
Gopalakrishnan, and Robert M. Kirby. An approach
to formalization and analysis of message passing
libraries. Formal Methods for Industrial Critical
Systems (best paper). LNCS 4916, pages 164–181,
2008.

[12] Alan Humphrey, Christopher Derrick, Ganesh
Gopalakrishnan, and Beth Tibbitts, GEM: Graphical
Explorer for MPI Programs, Parallel Software Tools
and Tool Infrastructures (ICPP workshop), 2010.
http://www.cs.utah.edu/fv/GEM

[13] Madan Musuvathi and Shaz Qadeer. Iterative context
bounding for systematic testing of multithreaded
programs. PLDI, 2007, 446-455. See CHESS tool at
http://research.microsoft.com/chess.

[14] Stavros Tripakis, Christos Stergiou, and Roberto
Lublinerman. Checking Non-Interference in SPMD
Programs. 2nd USENIX Workshop on Hot Topics in
Parallelism (HotPar), 2010.

[15] Guodong Li and Ganesh Gopalakrishnan. Scalable
SMT-based verification of GPU kernel functions.
Foundations of Software Engineering, Santa Fe, NM,
2010. Accepted.

[16] Yu Yang, Xiaofang Chen, Ganesh Gopalakrishnan,
and Robert Kirby. Runtime model checking of
multi-threaded C/C++ programs. TR UUCS-07-008.

[17] Sarvani Vakkalanka, Michael DeLisi, Ganesh
Gopalakrishnan, and Robert M. Kirby. Scheduling
considerations for building dynamic verification tools
for MPI. PADTAD, Seattle, WA, July 2008.

[18] Sarvani Vakkalanka, PhD Dissertation, University of
Utah, School of Computing, 2010. http:
//www.cs.utah.edu/~sarvani/dissertation.html.

[19] Sarvani Vakkalanka, Anh Vo, Ganesh Gopalakrishnan,
and Robert M. Kirby. Precise Dynamic Analysis for
Slack Elasticity: Adding Buffering Without Adding
Bugs. Accepted for presentation in EuroMPI 2010,
Stuttgart, Germany, September, 2010.

[20] Anh Vo, Sriram Aananthakrishnan, Ganesh
Gopalakrishnan, Bronis R. de Supinski, Martin
Schulz, and Greg Bronevetsky, A Scalable and
Distributed Dynamic Formal Verifier for MPI
Programs, Supercomputing (SC), 2010, Accepted.
http://www.cs.utah.edu/fv/DAMPI.

[21] Stephen F. Siegel, Anastasia Mironova, George S.
Avrunin, and Lori A. Clarke. Combining symbolic
execution with model checking to verify parallel
numerical programs. ACM TOSEM, 17(2):Article 10,
1–34, 2008.

141

