
Unifying Verification and Validation Techniques : Relating
Behavior and Properties through Partial Evidence∗

Matthew B. Dwyer, Sebastian Elbaum
Dept. of Computer Science and Engineering

University of Nebraska – Lincoln
{dwyer,elbaum}@cse.unl.edu

ABSTRACT
The past decade has produced a range of techniques for assess-
ing the correctness of software systems. These techniques, such
as various forms of static analysis, automated verification, and test
generation, are capable of producing a variety of forms of evidence
showing that the software behavior meets its specified properties.
We contend that, as currently formulated, existing techniques fail
to externalize all of the useful pieces of evidence that they com-
pute which limits the opportunities to obtain a comprehensive and
accurate assessment of property-behavior conformance. Explicitly
accounting for the ways that V&V techniques produce partial ev-
idence offers the potential to look beyond the boundaries of indi-
vidual analysis, verification, and testing techniques to consider the
larger question of how the techniques fit together to provide an ex-
plicit body of evidence about software system quality.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Formal methods, Validation;; D.2.5 [Software Engineering]: Test-
ing and Debugging—Symbolic execution, Testing tools

General Terms
Reliability,Verification

1. INTRODUCTION
The past decade has seen the development of a large number

of techniques for reasoning about software system correctness. For
the sake of illustration, consider work on (1) software model check-
ing, e.g., [2, 19], (2) SAT-based software verification, e.g., [3, 17],

∗This material is based in part upon work supported by the Na-
tional Aeronautics and Space Administration under grant number
NNX08AV20A, by the National Science Foundation under awards
CNS-0720654 and CCF-0915526, and by the Air Force Office of
Scientific Research under Award #9550-09-1-0687. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect
the views of NASA, AFOSR, or NSF.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

(3) advanced abstract interpretation, e.g., [4], (4) symbolic execu-
tion, e.g., [16, 20], and (5) runtime verification, e.g., [1, 6]. In each
of these areas techniques have matured, through the accumulation
of a series of technical advances made by a number of different re-
searchers, to the point where they can be applied to components of
real software systems to detect faults or to assure limited correct-
ness properties.

Many of these areas remain very active and are likely to con-
tinue to be “hot” for many more years. We contend, however, that
the communities of experts who have developed and matured these
techniques risk missing opportunities to advance the overall goal
of software system V&V by narrowly focusing on individual tech-
niques. As Oliver suggests, in “The Incomplete Guide to the Art
of Discovery” [12], it can be healthy to disrupt the standard “flow”
in a discipline by raising fundamental questions about the utility
and broader connections of the specific methods developed in a re-
search program.

We believe that the recent NRC study “Software for Dependable
Systems : Sufficient Evidence?” [10] provides a valuable starting
point to frame those broader questions to disrupt the flow of ideas
in the verification and validation community. The report makes a
series of recommendations including “Make a dependability case
for a given system and context: evidence, explicitness, and exper-
tise.” Here we wish to expand on the meaning of “evidence”. The
study’s authors suggest that evidence will take the form of a “de-
pendability case”. We will not expand on the full definition of a
dependability case here, but will note that the report recommends
that a “case will typically combine evidence from testing with evi-
dence from analysis”. Implicit in this recommendation is the need
to represent evidence of property satisfaction that is generated from
multiple, and potentially very different, V&V techniques. This is
the key broader challenge we seek to expose.

We begin by considering the type of evidence that might be pro-
duced by an “ideal” analysis1 or testing technique. An ideal analy-
sis targets precisely specified properties, uses a sound abstraction of
the software’s semantics2 and seeks to produce a proof that all pro-
gram executions satisfy the property3. An ideal testing process uses
a test oracle that directly encodes (a set of) properties to be checked,
and selects a diverse yet minimal set of inputs that, when applied
under specified controlled conditions, force the program to execute

1Here we use the term analysis to mean any technique intended to
reason about all program executions; for instance, static analyses
such as [4] or software verification techniques, such as [2].
2Rather than formalizing soundness here, we simply appeal to the
intuition that a sound abstraction overestimates the set of feasible
program executions.
3For simplicity we restrict our discussion to the common case
where properties describe conditions that are intended to hold on
all program executions.

93

in ways that are representative of all of its different behaviors. An
ideal analysis and testing technique also provides additional sup-
porting data that helps to contextualize the computed results and to
serve as building blocks on which other techniques can build.

These ideals are just that. In reality, testing and analysis tech-
niques render much weaker forms of evidence, partial evidence.
Nearly all static analysis tools are unsound in their treatment of
real programs, for example, in their use of integer arithmetic rather
than bit-limited computer arithmetic, and in their treatment of cer-
tain exceptions such as Java’s OutOfMemoryError. Moreover,
it is extremely rare for a static analysis to scale to large programs
and be sufficiently precise to prove property conformance. It is
much more common for an analysis to produce a, hopefully small,
set of potential property violation reports for a developer to inspect
[9]. Similarly, state-of-the-practice testing uses test oracles derived
from informal descriptions of system requirements and seeks in-
put sets that achieve only the simplest forms of coverage of the
program’s syntax, e.g., statement or branch coverage. The former
weakness can be mitigated in part by leveraging explicitly defined
correctness properties when available, while the latter requires that
testing moves more towards stronger oracles and execution path-
based adequacy criteria. Still, both mitigation strategies pose seri-
ous scalability challenges.

This situation is aggravated as the techniques discard some of the
computed and potentially valuable partial evidence. This runs di-
rectly opposite to another relevant recommendation from the NRC
study [10] which states “Demand more transparency, so that cus-
tomers and users can make more informed judgments about de-
pendability.” The results of applying a technique should be ren-
dered in a form that makes it more visible to the stakeholders in a
system, including other techniques. Existing state-of-the-art anal-
ysis and verification techniques provide an all or nothing interface
in rendering their results – either a property is proved or a series
of reports of potential errors is issued. As we explain, this limits
opportunities for revealing what the application of a technique to
a system has discovered and how that information might be inte-
grated with results from applying other techniques.

In this work we start framing the challenge of integrating multi-
ple forms of partial evidence by relating behavioral coverage with
program properties.

2. RELATING SYSTEM BEHAVIOR AND
PROPERTIES

Intuitively, a system’s behavior is defined as the set, or sequence,
of output values computed in response to a given set, or sequence,
of input values. An alternative, but equivalent, characterization can
be given in terms of the sequence of statements, or branches, exe-
cuted in response to a given set of input values.

V&V techniques make judgments about system behavior by
checking properties of output values and their relationships to in-
put values. For a given system there many be (infinitely) many
behaviors and many properties; Figure 1 depicts this relation. An
ideal V&V process will consider each behavior-property pair, for
example the one marked with the “x”.

Testing, and dynamic analyses in general, focus on a single be-
havior at a time, using input values to drive system execution and
checking the resulting output values. The thin gray vertical line on
the left of Figure 1 depicts a single test case equipped with an or-
acle for each property p1, . . . , pn; the solid black squares indicate
property checks that are encoded in test oracles. More typically,
testing will only focus on a subset of a system’s properties. The

behavior

pr
op

er
ty

×
p1

p2

pn

static analysis

test suite

test

pn-2

Figure 1: Relating Behaviors and Properties

test suite depicted on the right of the Figure include oracles for
properties p1, p2, and pn.

In contrast to testing, a sound static analysis typically focuses on
a single property at a time and attempts to reason about all possible
program behaviors. The horizontal dashed line in the Figure depicts
such an analysis for pn−2. This depiction corresponds to a static
analysis that is able to conclusively demonstrate that pn−2 holds
on all behaviors of the system. In practice, it is often the case that
a static analysis will be unable to produce such a conclusive result
[14], perhaps because the analysis is imprecise, and instead will
issue reports of potentially erroneous system behaviors. Note that
these reports may be “false” in the sense that no actual error exists.

Independent of whether the approach is static or dynamic, given
the size of the system behavior and property relation, one cannot
expect any one technique to provide significant property-behavior
coverage. However, as a series of V&V activities are performed
a body of evidence, i.e., the property-behavior pairs in the Figure,
accumulates. To leverage this a key question must be addressed:
“What property-behavior coverage is actually provided by applying
a V&V technique to a software system?”.

3. PARTIAL EVIDENCE
Figure 1 is an inaccurate depiction of what occurs in practice

in (at least) three ways. First, most applications of static analy-
sis techniques to real systems result in only partial behavior cover-
age. Second, when running a test, or a dynamic analysis technique,
information about a set of system behaviors can be inferred even
though a single behavior is considered explicitly. Finally, many
V&V techniques do not consider the original system correctness
requirements directly, rather they target a set of derivative, and per-
haps simplified, properties.

We believe that explicitly accounting for the ways that V&V
techniques produce partial evidence offers the potential for a more
accurate and comprehensive characterization of property-behavior
coverage. We illustrate three different ways that partial evidence
arises in the remainder of this section.

Figure 2 focuses on a single property to illustrate these issues
(the Figure depicts an exploded view of a single point on the y-axis
of Figure 1). The x-axis, at the bottom of the Figure, illustrates the
set of all system behaviors.

The first scenario we consider is extracting partial evidence from
an analysis that aims for a conclusive determination of property

94

static analysis Extract Partial Evidence

test suite Generalize Partial Evidence

behavior

Figure 2: The lines depict the behavior coverage provided by a
static analyses and test suite for a single program property

conformance. As explained above, when a sound static analysis
(the dashed line at the top of the Figure 2) is performed, it aims to
produce a conclusive demonstration that the property holds and if
that fails it produces a set of error reports.

Such an analysis may fail because some system behavior does
not conform to the property, but it is often the case that for real
systems a conclusive result is not obtained due to imprecision in
the analysis. Imprecision arises when analysis designers attempt
to control analysis cost by enforcing an abstraction of system exe-
cution semantics. As we have observed in our own work [8], it is
often the case that even a very imprecise analysis is able to demon-
strate that some subset of system behaviors enjoys the property un-
der analysis. When those behaviors can be explicitly characterized,
then they too can contribute to the body of V&V evidence.

When a static analysis does produce a conclusive result, there
may be questions about how thoroughly it accounted for all system
behaviors. One reason for this is that even sophisticated static anal-
ysis implementations, e.g., [18], may admit unsound treatment of
specific language features for performance or scalability reasons,
e.g., dynamic class loading, calls to native or foreign language rou-
tines. This may mean that a demonstration of property-behavior
conformance provides only partial information – a property may
be violated on a behavior that is treated unsoundly. Unsoundness
may be incorporated into an analysis intentionally to boost perfor-
mance while aiming just for fault detection, e.g., [5].

Regardless of the source of unsoundness, analyses can be con-
structed that explicitly characterize the behaviors on which their
results are unsound, e.g., [13]. When an analysis does this, it pro-
vides a more accurate characterization of the evidence it contributes
regarding property-behavior conformance.

The second scenario we consider involves generalizing partial
evidence produced by analyses that focus just on subsets of pro-
gram behavior. For instance, when a test suite is executed (the se-
ries of dots at the bottom of Figure 2) the individual tests check
for the property via an oracle. While the input values of each test
force the execution of a system behavior it is well understood that
other input values may force exactly the same behavior, i.e., the
same sequence of branches. Recent work on dynamic symbolic
execution [16] illustrates one method for generalizing partial evi-
dence produced by a dynamic analysis, such as testing, to produce a
broader characterization of the behavioral coverage of the analysis.
Another example of such generalization is work on multi-threaded
testing that infers coverage of all executions sharing the same logi-
cal schedule from a single observed execution [11].

The third scenario we consider focuses on properties rather than
behaviors. When it is difficult to reason about a given property,
due to lack of cost-effective V&V techniques, one can aim to pro-

behavior

pr
op

er
ty

static analysis
pi

a => pi

pi’

Figure 3: The lines depict the behavior coverage provided by a
static analyses for variants of program property pi

duce partial evidence by deliberately weakening the property to be
checked. Figure 3 illustrates two ways this might be achieved.

The middle line illustrates the partial evidence produced when
analyzing a system for property pi. If pi requires the analysis of
complex properties of system data, e.g., [15], then the analysis is
unlikely to succeed completely; for such properties the cost of ap-
plying test oracles may even become significant. When presented
with such a property a common approach in the static analysis
literature is to focus on related properties that are more control-
oriented, e.g., [2, 7].

We illustrate two forms of property weakening relative to pi. The
top line in the Figure illustrates how a variant property p′i might
yield broader behavior coverage. Ideally one would be able to re-
late these properties such that ∃pi′′ : pi′ ⊗ pi′′ =⇒ pi for some
operator ⊗. A second form of property weakening for analysis and
testing comes indirectly through the incorporation of assumptions
about system behavior. The bottom line in the Figure illustrates the
analysis of pi when program behavior is restricted to conform to
assumption a (the shaded region of the x-axis).

A number of researchers have explored approaches to scaling
advanced V&V techniques to large systems with complex correct-
ness properties. Some notable successes in this regard have resulted
from a willingness to compromise the ideal application of a tech-
nique – by introducing unsoundness or imprecision into the analy-
sis or by weakening the property under analysis. Rather than view
compromise as a negative, we regard it as a path towards progress
as long as the partial evidence of system property-behavior corre-
spondence can be captured accurately and comprehensively.

4. CHALLENGES AND OPPORTUNITIES
We believe that the software V&V community is well-positioned

to look beyond the boundaries of individual analysis, verification,
and testing techniques to consider the larger question of how the
individual techniques fit together to provide an explicit body of ev-
idence about software system quality.

In our experience, we have seen numerous instances where even
a “failed” application of a V&V technique produced some evi-
dence of property-behavior conformance. By accumulating evi-
dence from multiple techniques, a comprehensive assessment of
property-behavior coverage can be pieced together. If that com-
bined evidence can be presented to developers and users of systems
they will be better equipped to make decisions about whether to
deploy the system, how to deploy the system, and what additional
V&V ought to be applied.

We conclude with a series of questions, with associated com-
ments, that illustrate some of the challenges and opportunities that
lie along this line of inquiry.

95

What are the requirements for V&V evidence? We believe that
there should be a standardized syntax and semantics for evidence to
enable tools to interchange and process evidence. Meta-data, such
as a record of the provenance of the evidence, i.e., the tools that
contributed to it and processed it, will also be necessary to enable
the reproduction or auditing of the evidence.

What frameworks for encoding property-behavior coverage
are appropriate for capturing evidence from a variety of V&V
techniques? While there are a number of possible candidates, we
believe that logical representations offer some compelling advan-
tages that are worth considering. For example, a wide-range of au-
tomated verification techniques operate by generating verification
conditions as logical formula, symbolic execution techniques con-
struct logical representations of path conditions, and specification-
based approaches may start with pre/post conditions expressed us-
ing logic. Moreover, the use of logical path conditions provides
a bridge between traditional white-box testing and specification-
based techniques.
How can existing analysis and testing techniques be adapted
to report partial property-behavior coverage? V&V techniques
are “stressed” as it is to scale to the large complex software systems
being developed today. Adding the requirement that they produce
evidence would only seem to further reduce their applicability in
practice. One approach to consider is to develop techniques that
operate in different modes. For instance, an analysis running in
“fault finding mode” might be explicitly unsound for scalability
and be applied earlier in development. Once it fails to find any
more faults the analysis is reconfigured to “proof mode” in which
it maximizes soundness to prove property-behavior conformance.
Finally, it is run a single time in “evidence generating mode” to
extract as much partial property-behavior coverage as possible.

When using partial V&V evidence what criteria should be used
to design the property space? It seems important to consider the
effectiveness of different V&V techniques on types of properties.
In fact, a given property might have evidence produced from a set of
techniques, so taking into account the classes of behaviors relevant
to a property and amenable to a particular technique might also be
warranted. Often times one views redundancy in a specification
as undesirable, but with partial evidence one might find that V&V
of a set of (partially) redundant properties, which are related to a
given target property, provides an opportunity for greater coverage
of the target property. Given such considerations, what constitutes
a sufficient set of properties.

How can property-behavior coverage be combined and put to
effective use? Combining evidence produced by multiple V&V
techniques offers the opportunity for more effective and more use-
ful combination of different techniques. In Figure 2, the gray
shaded areas on the x-axis depict the regions of behavior that are
not covered by either the partial evidence produced by the analysis
or the generalized evidence produced by the test suite. That infor-
mation can be used to target additional V&V activities. For exam-
ple, assumption a in Figure 3 might be calculated from the gap in
coverage for property pi at some point during the V&V process.

The notion of combined evidence offers an additional potential
benefit. The strengths of one V&V technique can be applied to
“mask” the weakness or unsoundness of another. For example, a
static analysis might be applied to confirm a property on all behav-
iors that do not involve calls to foreign functions. The behaviors
that do involve such calls might then be targeted by testing tech-
niques which have no problem executing foreign function calls.

How can property-behavior coverage be presented for human
consumption and for consumption by other V&V to target their
application? The property-behavior relation is huge and represent-
ing it in a form that can be easily understood by a developer, reg-
ulator, or user is a daunting challenge. We believe that it will be
necessary to develop means of not only combining evidence but
also of generalizing it wherever possible to simplify its uptake by
system stakeholders. Generalization, perhaps of a different form,
may also prove valuable in making the processing of evidence by
other tools more tractable.

96

5. REFERENCES
[1] P. Avgustinov, J. Tibble, and O. de Moor. Making trace

monitors feasible. In Conf. on Obj. Oriented Prog. Sys. Lang.
and App., pages 589–608, 2007.

[2] T. Ball and S. K. Rajamani. The SLAM Toolkit. In
Proceedings of the 13th International Conference on
Computer Aided Verification, pages 260–264. Springer,
2001.

[3] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and
Y. Zhu. Bounded model checking. Advances in Computers,
58:118–149, 2003.

[4] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival. A static analyzer for
large safety-critical software. In Proc. ACM SIGPLAN Conf.
on Prog. Lang. Design and Impl., pages 196–207, 2003.

[5] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted and
automatic generation of high-coverage tests for complex
systems programs. In Proceedings of OSDI, pages 209–224,
2008.

[6] F. Chen and G. Roşu. Mop: an efficient and generic runtime
verification framework. In Conf. on Obj. Oriented Prog. Sys.
Lang. and App., pages 569–588, 2007.

[7] M. Dwyer, G. Avrunin, and J. Corbett. Patterns in property
specifications for finite-state verification. In Int’l. Conf. on
Soft. Eng., pages 411–420, May 1999.

[8] M. Dwyer and R. Purandare. Residual dynamic typestate
analysis. In Int’l. Conf. on Aut. Soft. Eng., pages 124–133,
2007.

[9] S. J. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay.
Effective typestate verification in the presence of aliasing. In
Int’l. Symp. Softw. Test. Anal., pages 133–144, 2006.

[10] D. Jackson, M. Thomas, and L. I. Millett. Software for
dependable systems : Sufficient evidence? Technical report,
National Research Council of the National Academies, 2007.

[11] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging
parallel programs with instant replay. IEEE Trans.
Computers, 36(4):471–482, 1987.

[12] J. Oliver. The Incomplete Guide to the Art of Discovery.
Columbia University Press, 1991.

[13] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Păsăreanu.
Differential symbolic execution. In Proceedings of the
SIGSOFT Symposium on Foundations of Software
Engineering, 2008.

[14] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum, and
G. Rothermel. Predicting accurate and actionable static
analysis warnings: an experimental approach. In Proc. 30th
Intnl. Conf. on Soft. Eng., pages 341–350, 2008.

[15] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic. ACM Trans. Program. Lang.
Syst., 24(3):217–298, 2002.

[16] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit
testing engine for c. In Proc. 10th Euro. Soft. Eng. Conf. held
jointly with 13th ACM SIGSOFT Intnl. Symp. on Found. of
Soft. Eng., pages 263–272, 2005.

[17] S. Srivastava, S. Gulwani, and J. S. Foster. Vs3: Smt solvers
for program verification. In Proceedings of Computer Aided
Verification, 2009.

[18] R. Vallée-Rai. SOOT: A Java bytecode optimization
framework. Master’s thesis, School of Computer Science,
McGill University, Montreal, Canada., Oct 2000.

[19] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. In ASE, Sept. 2000.

[20] W. Visser, C. S. Păsăreanu, and S. Khurshid. Test input
generation with Java PathFinder. In Proceedings of the
ACM/SIGSOFT International Symposium on Software
Testing and Analysis, pages 97–107, 2004.

97

