
Validity Concerns in Software Engineering Research

Hyrum K. Wright Miryung Kim Dewayne E. Perry
Electrical and Computer Engineering

The University of Texas at Austin
Austin, Texas 78712

hyrum_wright@mail.utexas.edu,{miryung, perry}@ece.utexas.edu

ABSTRACT
Empirical studies that use software repository artifacts have
become popular in the last decade due to the ready avail-
ability of open source project archives. In this paper, we
survey empirical studies in the last three years of ICSE and
FSE proceedings, and categorize these studies in terms of
open source projects vs. proprietary source projects and
the diversity of subject programs used in these studies. Our
survey has shown that almost half (49%) of recent empirical
studies used solely open source projects. Existing studies
either draw general conclusions from these results or explic-
itly disclaim any conclusions that can extend beyond specific
subject software.

We conclude that researchers in empirical software engi-
neering must consider the external validity concerns that
arise from using only several well-known open source soft-
ware projects, and that discussion of data source selection
is an important discussion topic in software engineering re-
search. Furthermore, we propose a community research in-
frastructure for software repository benchmarks and sharing
the empirical analysis results, in order to address external
validity concerns and to raise the bar for empirical software
engineering research that analyzes software artifacts.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General

General Terms
Validity

Keywords
empirical study, external validity, open source software

1. INTRODUCTION
Over the past several years, software engineering researchers

have taken advantage of the wealth of information avail-
able from open source software projects. Researchers have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

mined open source code repositories, issue trackers, mailing
list archives and other artifacts to perform their empirical
studies. Ostensibly, these studies are performed to learn
more about the state of software development, and how it
can be improved.

Many of these studies draw general conclusions about soft-
ware engineering, while examining strictly open source soft-
ware. While these observations are useful, rarely do the
authors of such studies comment on the threats to validity,
particularly external validity, that studying only open source
software presents. Some researchers allow the pendulum to
swing too far in the other direction, by explicitly disclaiming
any conclusions beyond the specific projects studied. Nei-
ther approach is useful in advancing the state of the art or
practice in software engineering.

In this paper, we explore potential threats to validity
in software engineering research that use software artifact
archives as a data set. While discussing validity generally,
we specifically focus on the external validity issues relating
to the choice of using open source data as a primary research
data source. We survey several years worth of past FSE and
ICSE conference proceedings to determine the prevalence of
the perceived problem, pose questions we feel are pertinent
to improving the state of empirical software engineering re-
search, and offer suggestions as to ways in which this knowl-
edge can improve the research methods going forward.

2. EXPERIMENTAL VALIDITY
For experiments of any type to make convincing argu-

ments, they must possess a high degree of validity. While
a complete treatment of experimental validity is better left
to other sources (see [17] and [21]), this section briefly ad-
dresses challenges to internal, external, and construct valid-
ity in software engineering research.

2.1 Construct validity
Construct validity refers to whether specific measurements

indeed model independent and dependent variables from
which the hypothesized theory is constructed. In other words,
an empirical study with high construct validity would ensure
the studied parameters are relevant to the research ques-
tions.

2.2 Internal validity
Confounding factors represent a major threat to the in-

ternal validity in empirical studies. As our survey shows,
selection bias is a prevalent problem in software engineering
research, and limits the validity of these studies. Internal

411

validity can be difficult to counter, since changes in the vari-
able under observation may be attributed to the existence
or variations in the degree of other variables, which are re-
lated to the manipulated variable but not explicitly modeled
variables.

2.3 External validity
Generally, external validity refers to the applicability of

study or experimental results to realms beyond those under
immediate observation. A study is said to have a high de-
gree of external validity if the conclusions hold throughout
the study domain. In most scientific disciplines, researchers
prize studies with external validity, since the results can be
widely applied to other scenarios.

External validity for a given study has several aspects:
• whether the study generalizes to other subjects in the

domain
• whether there exist enough evidence and arguments to

support the claimed generalizability
• whether the study outcomes validate predicted theories
Mitigating construct and internal validity concerns is of-

ten more important than addressing threats to external va-
lidity as addressing the first two is a pre-requisite before con-
sidering the generalizability of the studied results beyond the
subject domain in which the study was conducted. However,
every software engineering study should strive for a high de-
gree of external validity as the world of software is simply
too large and too complex to study comprehensively. It is
important that researchers choose representative projects to
study and then generalize the results from.

3. OPEN SOURCE DATA IN RESEARCH
With the recent explosion of open source software devel-

opment and data, researchers have turned to these sources
for easy access to development data and artifacts [2, 4, 1].
This occurs, even in spite of the difficulties, understood or
not, in doing so [12]. Obtaining a balanced set of data from
open source repositories has been an issue in the open source
research community for some time, and several collections
of data have grown to attempt to solve this problem [11, 13,
20].

However, open source data can differ from proprietary
software data in a number of ways. First, when using open
source data sets, researchers often have access to the ar-
tifacts of the software engineering process, while when ex-
amining proprietary software, researchers can often get a
more complete view of the software system and the environ-
ment under which the software systems are constructed and
maintained. Second, further biasing the source data is the
domain of open source software. Many of the most mature
open source projects are systems-domain software, which
may lead to its own set of development biases. Software de-
velopment targeted toward other domains can have unique
concerns which are not accurately captured by a systems-
specific software bias.

Third, a large body of work exists to determine the social
structure of open source projects [8]. Proprietary projects,
meanwhile, already have established organization structure,
and by studying them, researchers may forgo the time-
intensive process of discovering social relationships. More-
over, Conway’s Law posits that the design and structure of
the software, whether open or proprietary, may be further
biased by the structure of the organization [7]. Since the or-

ganizational structure of open source projects is often spon-
taneously formed, the types of research questions that can be
answered about communication and organization structure
using open source project data may not generalize to closed
source projects where the structure is defined explicitly.

Finally, using open source project data further compli-
cates the validation of research methods, as it is difficult to
find the right personnel (developers, managers and testers)
and have them validate the results of automated software
analysis results as the roles of contributors are often implicit
and their work is often based on voluntary commitment.

3.1 Survey of open source data in research
A brief survey of several past conferences helps illustrate

our point. This survey, while not completely representa-
tive of all software engineering research, does show what the
prevailing trends are at the major software engineering con-
ferences. In this survey, we have investigated the extent of
empirical studies that use only open source software artifacts
(OSS) vs. propriety source software artifacts (PSS).

While the operational definition of open source can be
somewhat fluid, we decided to use the definition of “read-
ily available source code and development artifacts” to dis-
tinguish open projects from closed ones. In addition, open
source projects exist along a continuum of open development
practices and licenses, so this classification is of necessity
subjective. In classifying the papers, we looked for papers
which used open source data, not just those that built an
open source tool or provided their tool under an open source
license. Neither did we classify such papers as open when the
authors implemented their tool as a part of an open source
framework by distinguishing the data source from the vari-
ous other uses or mention of open source projects discussed
in the various papers. Table 1 illustrates the results of our
survey regarding the use of OSS vs. PSS.

The results of our survey are illuminating. Of the re-
cent papers at ICSE or FSE which use software projects as
study subjects, nearly half use OSS data exclusively, while
another 23% use PSS data. Only 15% of the papers used
any combination of OSS, PSS, or custom data (which in-
cludes manufactured examples and benchmarks). We hope
that the difference between OSS and PSS is not as drastic
as believed, lest the validity of a large amount of software
engineering research comes into question.

In doing this survey, we noticed some interesting phenom-
ena. Phases such as “production-level code” or “real-world
application”seemed to abound when speaking of open source
projects. Many papers readily admitted to using projects
from SourceForge as their sole source of input data, while
being blissfully ignorant of the problems associated with do-
ing so [12].

We also noticed that many authors choose to test their al-
gorithm or process on data which they manufactured, such
as sample programs and benchmarks. While such testing is
an important step in the research process, results thus ob-
tained do not lend much confidence to their external validity.
(See Section 5 for a discussion of benchmarking.)

Anecdotally, the implementation languages of the subject
data sources seemed quite skewed as well. For example,
many study tools were written in Java, so the authors chose
Java programs as their data sources. Nowhere were standard
“industrial” languages found, such as Visual Basic or Cobol.
While these languages are certainly dated and may not be

412

Conference Total papers Papers using data
Data source

open closed custom combination
ICSE ’07 49 39 18 9 10 2
ESEC/FSE ’07 42 23 12 5 2 4
ICSE ’08 56 36 17 9 5 7
FSE ’08 31 19 7 5 2 5
ICSE ’09 50 38 22 7 3 6
ESEC/FSE ’09 38 20 10 5 2 3
Total 266 175 86 40 24 27
As percent of total
with data

— 100% 49% 23% 14% 15%

Table 1: Use of open source as data sources in research papers

on the cutting edge of software engineering research, large
volumes of existing systems still run on these types of plat-
forms, and software engineering practitioners still interface
and use such languages on a regular basis. Researchers inter-
ested in improving the state of software engineering practice
would do well to consider projects written in languages such
as these as candidates for study.

4. OPEN QUESTIONS
Given the above background information, we believe the

empirical software engineering community must address the
following questions to increase the external validity of stud-
ies performed primarily using open source data.

• What threats to validity arise from relying so heavily
on open source data?

• Do open source and proprietary development practices
differ in meaningful ways?

• Is there sufficient variety within open source data to
allow results to be generalizable?

• Even when validity issues exist, do authors recognize
these threats, and address them?

Program committees, reviewers and researchers can and
should work together to answer these questions and increase
the validity of software engineering research. By recognizing
the benefits and biases of various data sources, authors can
better improve the quality of their research, and address the
issues of validity given the differences between proprietary
and open source software development.

For instance, historically, open source teams have worked
in ways that are fundamentally different from proprietary
software teams [14]. Members come and go frequently, they
are widely geographically distributed, and by necessity they
leave persistent communication artifacts, such as email
archives. These characteristics are especially relevant to
the large projects often studied by software engineering re-
searchers. In contrast, proprietary teams operate differently,
and may leave much less information of use to researchers.
Casual conversations, meetings, and other communication
often goes unrecorded. In some settings, these interactions
can comprise 75 minutes of the typical day [15].

The one resource that proprietary software development
does have that open source does not, is access to the peo-
ple involved. Gathering this information, while providing
a much richer set of data, is also much more expensive

and time consuming than simply applying automatic mining
techniques to the large corpus of open source data.

Additionally, the success of open source has not been
lost on proprietary software vendors. Many companies have
leveraged the possibilities of increased globalization to geo-
graphically distribute teams in an effort to maximize produc-
tivity [5]. While the source code may not be available under
an open source license, the development practices begin to
mirror those of the open source. At the same time, successful
open source projects are often sponsored, adopted, or out-
right bought by commercial companies. In such cases, the
license may remain open, but the development structure be-
gins to become more rigid and approach that of traditional
software development processes.

5. BENCHMARKING
One final point worth noting is the use of benchmarks

in software engineering research. Ours is not the first sug-
gestion to use benchmarks in software engineering [18, 3],
but previous pleas have largely been ignored, as our sur-
vey data indicates. The threats to validity are increasing,
and a proper set of empirical benchmarks, along with other
measures will strengthen research validity in the software
engineering community.

While the software testing community has begun to use
the Software-artifact Infrastructure Repository (SIR) to eval-
uate various testing methods [10], and many of the papers
we surveyed referenced artifacts from this repository, these
papers rarely took a comprehensive look at the entire suite
since the SIR repository is restricted by housing software
history with regression tests and faults data. SIR is a good
start, but researchers need a more complete set of data for
strong experimental validity.

Constructing a representative set of benchmark data is
not easy, but results from other fields are encouraging. For
example, the Dacapo benchmark for compiler optimization
research has been adopted by both academic and industry
researchers and has continued to evolve [6]. While bench-
marks do have their own sets of difficulties (researchers can
and will optimize research to fit the characteristics of the
benchmark), we believe the benefits of these benchmarks
largely outweigh the costs. The maintenance of the bench-
mark suite could potentially be time intensive, given the
rapidly changing state of the software world.

Despite these difficulties, a proper benchmark suite should
be considered a prerequisite for creating a proper baseline for
valid experiments in software engineering research. Further-
more, such benchmark will facilitate comparative evaluation

413

of research approaches. Currently, the lack of shared bench-
marks and shared analysis results on those benchmarks often
forces researchers to re-implement others’ prior approaches
and compare their approach on the same set of subject soft-
ware [9, 16], unnecessarily incurring a high cost of research
method validation.

6. CONCLUSION
Software engineering research has progressed much since

the early days of ICSE and FSE and the bar for empirical
validation using real software systems has been raised signif-
icantly [19]. In looking at recent ICSE and FSE conferences,
we have presented our concerns that the data being exam-
ined is not sufficient to warrant the implicitly-claimed gen-
eralizability of results, and that authors do not sufficiently
acknowledge this fact. As a result, we have outlined a se-
ries of questions which we hope will encourage researchers
to better address these issues of external validity.

Furthermore, looking forward, we presented our rationale
on why we believe a properly implemented benchmark suite
and shared analysis results on the suite will improve the
validity measure of software engineering research. Lastly,
reviewers and members of program committees bear the re-
sponsibility of policing validity concerns in the software en-
gineering community. These prominent members of the re-
search community must insist on a discussion of validity in
the papers they review for publication. A concerted effort in
this area will rise the tide which lifts all boats toward higher
validity standards.

7. ACKNOWLEDGMENTS
The authors thank Christine Julien for insightful discus-

sion on this topic, and the anonymous reviewers for their
constructive criticism. Parts of this work were funded by
grant NSF-CCF 1043810 and NASA grant NNX08AC48G.

8. REFERENCES
[1] Open source software engineering workshop series. In

WOSSE, 2001-2005.

[2] Working conference on mining software repositories.
In MSR, 2004-2010.

[3] Working conference on mining software repositories:
Mining challenges. In MSR Challenge Track,
2006-2010.

[4] Workshop on emerging trends in free/libre/open
source software research and development. In FLOSS,
2010.

[5] P. J. Ågerfalk, B. Fitzgerald, H. H. Olsson, and E. O.
Conchúir. Benefits of global software development: the
known and unknown. In ICSP’08: Proceedings of the
Software process, 2008 international conference on
Making globally distributed software development a
success story, pages 1–9, Berlin, Heidelberg, 2008.
Springer-Verlag.

[6] S. Blackburn, R. Garner, C. Hoffmann, A. Khang,
K. McKinley, R. Bentzur, A. Diwan, D. Feinberg,
D. Frampton, S. Guyer, et al. The DaCapo
benchmarks: Java benchmarking development and
analysis. In Proceedings of the 21st annual ACM
SIGPLAN conference on Object-oriented programming
systems, languages, and applications, page 190. ACM,
2006.

[7] M. Conway. How do committees invent. Datamation,
14(4):28–31, 1968.

[8] K. Crowston and J. Howison. The social structure of
free and open source software development. First
Monday, 10(2), 2005.

[9] M. D’Ambros, M. Lanza, and R. Robbes. An extensive
comparison of bug prediction approaches. In Mining
Software Repositories (MSR), 2010 7th IEEE Working
Conference on, pages 31 –41, 2-3 2010.

[10] H. Do, S. Elbaum, and G. Rothermel. Supporting
controlled experimentation with testing techniques:
An infrastructure and its potential impact. Empirical
Software Engineering, 10(4):405–435, 2005.

[11] I. Herraiz, D. Izquierdo-Cortazar, F. Rivas-Hernández,
J. Gonzalez-Barahona, G. Robles, S. nas Dominguez,
C. Garcia-Campos, J. Gato, and L. Tovar.
FLOSSMetrics: Free/libre/open source software
metrics. In Proceedings of the 13th European
Conference on Software Maintenance and
Reengineering (CSMR). IEEE Computer Society,
2009.

[12] J. Howison and K. Crowston. The perils and pitfalls of
mining SourceForge. Proceedings of the International
Workshop on Mining Software Repositories (MSR
2004), pages 7–11, 2004.

[13] J. Howison and K. Crowston. FLOSSmole: A
collaborative repository for FLOSS research data and
analyses. Int. J. of Information Technology and Web
Engineering, 1(3):17–26, 2006.

[14] J. Howison, K. Inoue, and K. Crowston. Social
dynamics of free and open source team
communications. International Federation for
Information Processing Digital Library, 203(1), 2009.

[15] D. Perry, N. Staudenmayer, and L. Votta. People,
organizations, and process improvement. IEEE
SOFTWARE, pages 36–45, 1994.

[16] R. Robbes, D. Pollet, and M. Lanza. Replaying ide
interactions to evaluate and improve change prediction
approaches. In Mining Software Repositories (MSR),
2010 7th IEEE Working Conference on, pages 161
–170, 2-3 2010.

[17] R. Rosenthal and R. Rosnow. Essentials of behavioural
research. McGraw, 1991.

[18] S. Sim, S. Easterbrook, and R. Holt. Using
benchmarking to advance research: A challenge to
software engineering. In Proceedings of the 25th
International Conference on Software Engineering,
page 83. IEEE Computer Society, 2003.

[19] W. F. Tichy. Should computer scientists experiment
more? IEEE Computer, 31(5):32–40, 1998.

[20] M. Van Antwerp and G. Madey. Advances in the
sourceforge research data archive (srda). In Fourth
International Conference on Open Source Systems,
IFIP 2.13 (WoPDaSD 2008), Milan, Italy, September
2008.

[21] R. Yin. Case study research: Design and methods.
Sage Pubns, 2008.

414

