
White Paper for

Workshop on New Visions for Software Design and Productivity

Title: Value Based Software Engineering

Barry Boehm and Dan Port, University of Southern California
Kevin Sullivan, University of Virginia

Abstract

 The primary thesis of Value-Based Software Engineering (VBSE) is that the
integration of a software system’s stakeholder value propositions into the system’s
definition, design, development, deployment, and evolution is critical to the system’s
success. This white paper:

• Analyzes the sources of software project failure in the Standish Report, and
shows that many of the failed projects were caught in the vise of value-
insensitive software engineering.

• Discusses promising research ideas for improving our capability to perform
VBSE.

• Presents a roadmap for making progress toward VBSE and its resulting
benefits.

The white paper concludes with a summary of the relations between VBSE and other
software research and applications areas. It is unavoidably involved with software and
information system product and process technology, and their interaction with human
values. It is strongly empirical, but includes new concepts in need of stronger theory. It
uses risk considerations to balance software discipline and flexibility, and to answer other
key “how much is enough?” questions. And it helps illuminate information technology
policy decisions by identifying the quantitative and qualitative sources of cost and value
associated with candidate decisions.

Failed Software Projects: Sources and Remedies

 The 1995 CHAOS Report [Standish, 1995] surveyed several hundred software projects and found
that only 16% of them were completed within their planned budget and schedule. The report analyzed the
major sources of failure for the other projects, and found that eight problem sources accounted for 80% of
the failures. Each of these sources is discussed below in terms of their relation to value-based approaches
to software engineering.

1. Incomplete Requirements (13.1% of project failures)
A major source of project overruns due to incomplete requirements is the neglect of

critical off-nominal requirements. Empirical studies have shown that 80% of the software rework
comes from 20% of the problems, and that many of these critical problems involve neglect of off-
nominal requirements [Boehm-Basili, 2001]. An effective value-based technique for addressing
these problems is risk management, particularly the assessment of the relative risk exposure
(probability of loss times size of loss) of the various off-nominal operational scenarios [Boehm,
1989]. Other effective techniques involve goal-oriented approaches to software requirements
[Dardenne et al., 1991; Young, 2001], in which goal elaboration provides a value oriented
approach to identifying critical off-nominal or missing requirements. Further research in each of
these areas would strengthen projects’ ability to avoid such overruns.

2. Lack of User Involvement (12.4%)
We would generalize this to “lack of critical-stakeholder involvement,” as many system

failures also result from lack of higher management, customer, maintainer, and interoperator, as
well as user involvement. Here again, several approaches involving stakeholder value-based
considerations have been developed and successfully applied, such as Participatory Design and
Joint Application Development [Carmel et al., 1993], Quality Function Deployment [Eureka-
Ryan, 1998], and stakeholder win-win [Boehm-Ross, 1989]. Further research has considerable
potential in areas such as client-developer mutual requirements learning [Majchrzak-Beath, 2001]
and multi-attribute tradeoff analysis [Keeney-Raiffa, 1993].

3. Lack of Resources (10.6%)
Software cost and schedule estimation models have saved many projects from overruns.

But the pace of software engineering reinvention (COTS, open source, rapid development, agile
development, iterative software process models) requires the software estimation field to be
continually reinventing itself as well [Boehm et al., 2000, Chapter 6]. Other promising areas
involve innovative critical-resource driven approaches such as the theory of constraints
[Friedman-Leondes, 1969; Goldratt, 1990], timeboxing [McConnell, 1996] and the
schedule/cost/quality as an independent variable process [Boehm-Brown, 2001].

4. Unrealistic Expectations (9.9%)

This can be considered the as the opposite side of the coin from “Lack of Resources”.
Some additional value-based approaches for creating realistic expectations are business case
analysis [Reifer, 2002], the DMR Group’s Benefits Realization Approach and its Results Chain
method linking initiatives to contributions, assumptions, and outcomes [Thorp, 1998], and
techniques for expectations management [Karten, 1994].

5. Lack of Executive Support (9.3%)
As discussed in point 2 above, lack of executive stakeholder support is often highly

correlated with lack of executive involvement in formulating an initiative. Techniques such as
Results Chain and business case analysis can also help here.

6. Changing Requirements (8.7%)

A highly promising value-based approach here is Sullivan’s Strategic Design initiative,
which uses techniques from real options theory [Amram-Kalutilaka, 1998] and the economic
theory of modular design [Baldwin-Clark, 1999] to analyze the economic value of techniques for
modular software design such as information hiding [Parnas, 1972] in facilitating adaptation to
changing requirements [Sullivan et al., 2001].

7. Lack of Planning (7.5%)

This has a straightforward good-practices component, but value based planning
approaches such as DMR’s Benefits Realization Approach avoid additional failures by identifying
complementary initiatives (e.g., data collection, conversion, training, logistics) that must also be
pursued to make the software application a success.

8. Absence of Need (7.5%)

Here again, business case analysis, improved developer-client mutual learning, and stakeholder
requirements prioritization capabilities can help avoid software “gold plating” phenomena.

Software Economics Roadmap

 Value-based software engineering is a major component of the overall field of software
economics. Our roadmap [Boehm-Sullivan, 2000] for the next major phase of research in software
economics begins with the goal of developing fundamental knowledge that will enable the end objective of
significant, measurable increase in the value created over time by software and information technology
projects, products, portfolios and the industry.
 Working backwards from the end objective, we identify a network of important intermediate
outcomes. The roadmap in Figure 1 illustrates these intermediate outcomes, dependence relationships
among them, and important feedback paths by which models and analysis methods will be improved over
time. The lower left part of the diagram captures tactical concerns, such as improving cost estimation for
software projects, while the upper part captures strategic concerns, such as reasoning about real options and
synergies between project and program elements of larger portfolios.

Significantly and
measurably greater

value created by
SW/IT projects,

programs, portfolios
and industry

Market structures
more favorable to
Increased SW/IT

productivity

Better tactical and
strategic SW/IT
product, process
portfolio design
decision-making

Better SW/IT
project/portfolio

status, valuation,
& risk assessment

decision aids

Better SW/IT
system/portfolio
business-case,
payoff modeling

Better
macroeconomic
data and models

Better national-
level strategic IT
decision-making

(R&D, policy)Better models of
sources of value

in SW/IT including
options, synergies

& competition

Better SW/IT
project cost &

schedule mgmt.
tracking

Better models for
estimating SW/IT
costs & schedule

Better SW/IT
project benefits

realization mgmt.
tracking

Better data for
estimating SW/

IT benefits

Better models for
estimating SW/IT

benefits

Better Software
Engineering
Education

Better models of
links from SW/IT
product, process
& portfolio design
to benefits created

Better data for
estimating SW/

IT costs &
schedule

Better monitoring,
dynamic analysis of

SW/IT products,
processes,

portfolios and
environments

Figure 1: Roadmap for research in software engineering economics.

Making Decisions that are Better for Value Creation
 The goal of our roadmap is supported by a key intermediate outcome: designers at all levels must
make design decisions that are better for value added than those they make today. Design decisions are of
the essence in product and process design, the structure and dynamic management of larger programs, the
distribution of programs in a portfolio of strategic initiatives, and to national software policy. Better
decision-making is the key enabler of greater value added.
 Design decision-making depends in turn on a set of other advances. First, the design space within
which designers operate needs to be sufficiently rich. To some extent, the design space is determined by
the technology market structure: what firms exist and what they produce. That structure is influenced, in
turn, by a number of factors, including but not limited to national-level strategic decision-making, e.g., on
long-term materials that are produced that designers can then employ, and their properties.
 Second, as a field we need to understand better the links between technical design mechanism (e.g.
architecture), context, and value creation, to enable both better education and decision-making in any given
situation. An improved understanding of these links depends on developing better models of sources of
value that are available to be exploited by software designers in the first place (e.g., real options).
 Third, people involved in decision-making have to be educated in how to employ technical means
more effectively to create value. In particular, they personally need to have a better understanding of the
sources of value to be exploited and the links between technical decisions and the capture of value.
 Fourth, dynamic monitoring and control mechanisms are needed to better guide decision-makers
through the design space in search of value added over time. These mechanisms have to be based on
models of links between technical design and value and on system-specific models and databases that
capture system status, valuation, risk, and so on: not solely as functions of endogenous parameters, such as
software development cost drivers, but also of any relevant exogenous parameters, such as the price of
memory, competitor behavior, macroeconomic conditions, etc.
 These system specific models are based on better cost and payoff models and estimation and
tracking capabilities, at the center of which is a business-case model for a given project, program or
portfolio. We now discuss some of the central elements of this roadmap in more detail.

Richer Design Spaces
 The space in which software designers operate today is inadequate. One of the important reasons
for this is that the market structures within which software development occurs are still primitive in
comparison to those supporting other industries. We are less able to build systems from specialized,
efficiently produced, volume-priced third-party components than is possible in many other fields. We are
also less able to use markets to manage risk through warranties, liability insurance, etc., than is common in
most fields. The inability to manage risk by the use of market mechanisms is a major hindrance to efficient
production.

Links Between Technical Parameters and Value
 Software design involves both technical and managerial decisions. The use of formal methods or
the shape of an architecture are technical issues. The continuation or reorientation of a program in light of
new information is managerial. The two are not entirely separable. The selection of a life–cycle model is a
technical decision about the managerial framework for a system. Moreover, even where software
engineering is concerned with technical issues, the connection to value creation is what matters. The
promotion of Parnas’ concept of information hiding modules, for example, is based on the following
rationale: most of the life -cycle cost of a software system is expended change [Lientz-Swanson, 1980].
For a system to create value, the cost of an increment should be proportional to the benefits delivered; but if
a system has not been designed for change, the cost will be disproportionate to the benefits [Parnas, 1972].
Information hiding modularity is a key to design for change.
 Design for change is thus promoted as a value-maximizing strategy provided one could anticipate
changes correctly. While this is a powerful heuristic, we lack adequate models of the connections between
this technical concept and value creation under given circumstances. What is the relationship between
information hiding modularity and design interval? Should one design for change if doing so take any
additional time in an extremely competitive marketplace in which speed it market is a make-or-break issue?
Is information hiding obligatory if the opportunity cost of delay might be enormous? What is performance
if of the essence? How does the payoff from changing the system relate to the cost of enabling the change?

What role does the timing of the change play? What if it is not likely to occur until far in the future? What
if the change cannot be anticipated with certainty, but only with some degree of likelihood? What if the
change is somewhat unlikely to be needed but in the case that it is needed, the payoff would be great
[Sullivan et. al., 1999]? Va lue-optimal technical design choices depend on many such factors.
 Similarly, early advocates of the aggressive use of formal methods promoted them on the grounds
that software could not be made adequately reliable using only informal and ad hoc methods, but only
through the use of formal methods. Some thought that systems that could not be proven right should not be
built. The implied hypothesis (all too often promoted as fact) was that using formal methods was optimal
for value, if only because value simply could not be created, not of cost and risk, otherwise.
 Subsequent experience has shown that hypothesis to have been wildly incorrect. In particular, it
has turned out to be possible to create tremendous value without formal methods. Some early advocates
have admitted that and pose interesting questions about why things turned out this way. One answer is that
the assumed links were based on a view of software products as relatively unchanging that turned out not to
be an accurate view.
 We are not saying that formal methods cannot add value. They obviously can in some
circumstances: e.g., for high-volume, unchanging artifacts, such as automotive steering-gear firmware.
We still do not understand adequately the economic parameters under which investments in the use of
formal methods create value. Recent work, e.g., of Praxis, Inc., is improving our understanding. Serious
attempts to support limited but significant formal methods in industrial, object-oriented design modeling
frameworks, such as the Catalysis variant of UML [D’Souza -Wills, 1999], should provide additional
information over time.

Summary
To summarize, value-based software engineering is unavoidably involved with software and information
system product and process technology, and their interaction with human values. It is strongly empirical,
but includes new concepts in need of stronger theory. It uses risk considerations to balance software
discipline and flexibility, and to answer other key “how much is enough?” questions. And it helps
illuminate information technology policy by identifying the quantitative and qualitative sources of cost and
value.
 As seen in the discussion of software project failure sources above, the value-based approaches
cited can be applied to avoid many current project failures. They also provide starting points for further
high-leverage research to broaden and strengthen the techniques, and to extend them to address emerging
future software development approaches involving COTS, open source, rapid development, agile methods,
and global distributed development. Figure 1 provides a candidate roadmap for pursuing such a research
program.

References

[Amram-Kalutilaka, 1999]. M. Amram and N. Kalutilaka, Real Options, Harvard Business School Press, Cambridge,
Mass., 1999.

[Baldwin-Clark, 1999]. Baldwin, C. and K. Clark, Design Rules: The Power of Modularity, MIT Press, 1999.

[Boehm, 1989]. Boehm, B., Software Risk Management, IEEE-CS Press, 1989.

[Boehm-Basili, 2001]. Boehm, B. and V. Basili, “Software Defect Reduction Top 10 List,” IEEE Computer, January
2001.

[Boehm-Brown, 2001]. Boehm, B. and A.W. Brown, “Mastering Rapid Delivery and Change with the SAIV Process
Model,” Proceedings, ESCOM 2001, April 2001, pp. 147-156.

[Boehm-Ross, 1989]. Boehm, B. and R. Ross, “Theory -W software project management: principles and examples,”
IEEE Transactions on Software Engineering, 15(7):902-916, July 1989.

[Boehm-Sullivan, 2000]. Boehm, B. and K. Sullivan, “Software Economics: A Roadmap,” The Future of Software
Economics, IEEE/ACM, 2000.

[Carmel et al., 1993]. Carmel, E., R. Whitaker, and J. George, “PD and Joint Application Design: A Transatlantic
Comparison,” Communications of the ACM, June 1993, pp. 40-48.

[D’Souza-Wills, 1999]. D’Souza, D.F. and A.C. Wills, Objects, Components and Frameworks with UML: The
Catalysis Approach, Addison Wesley, Reading, Mass., 1999.

[Dardenne et al., 1991]. Dardenne, A., S. Fickas, and A. van Lamsweerde, “A Goal directed Concept Acquisition in
Requirements Elicitation,” Proceedings, IWSSD 6, IEEE, 1991, pp. 14-21.

[Eureka-Ryan, 1988]. Eureka, W. and N. Ryan, The Customer-Driven Company: Managerial Perspectives on QFD ,
ASI Press, 1988.

[Friedman-Leondes, 1969]. Friedman, G. and Leondes, C., “Constraint Theory,” IEEE Trans. Systems Sciences and
Cybernetics, January 1969, pp. 48-57.

[Goldratt, 1990]. Goldratt, E., What is this Thing Called Theory of Constraints and How Should It Be Implemented?,
North River Press, 1990.

[Karten, 1994]. Karten, N., Managing Expectations, Dorset House, 1994.

[Keeney-Raiffa, 1993]. Keeney, R.L. and H. Raiffa, Decisions with Multiple Objectives: Preferences and Value
Tradeoffs, (Cambridge, England: Cambridge University Press), 1993.

[Lientz-Swanson, 1980]. Lientz, B.P. and E.B. Swanson, Software Maintenance Management, Addison-Wesley,
Reading, Mass., 1980.

[Majchrzak et al., 2001]. Majchrzak, A. and C. Beath, “Beyond User Participation: A Process Model of Learning and
Negotiation During Systems Development.” In A. Seagards, J. Sampler, and R. Zmud (Eds), Refining the
Organizational Roles of Information Technology in the Information Age. University of Minnesota Press, 2001.

[McConnell, 1996]. McConnell, S., Rapid Development, Microsoft Press, 1996.

[Parnas, 1972]. Parnas, D.L., “On the criteria to be used in decomposing systems into modules”, Communications of
the Association of Computing Machinery, 1972, 15(12) pp. 1053–58.

[Standish, 1995]. Standish Group, “CHAOS,” http://www.standishgroup.com/chaos.htm.

[Sullivan et al., 1999]. Sullivan, K.J., P. Chalasani, S. Jha and V. Sazawal, “Software Design as an Investment
Activity: A Real Options Perspective,” Real Options and Business Strategy: Applications to Decision Making, L.
Trigeorgis, ed., (London, England: Risk Books), 1999, pp. 215-261.

[Sullivan et al., 2001]. Sullivan, K., Y. Cai, B. Hallen, W. Griswold, “The Structure and Value of Modularity in
Software Design,” Proceedings, ESEC/FSE 2001, ACM Press, pp. 99-108.

[Thorp, 1998]. Thorp, J. and DMR’s Center for Strategic Leadership, The Information Paradox: Realizing the Benefits
of Information Technology, McGraw-Hill, 1998.

[Young, 2001]. Young, R., Effective Requirements Practices , Addison-Wesley, 2001.

