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ABSTRACT

Mining software engineering data has emerged as a successful re-
search direction over the past decade. In this position paper, we ad-
vocate Software Intelligence (SI) as the future of mining software
engineering data, within modern software engineering research, prac-
tice, and education. We coin the name SI as an inspiration from the
Business Intelligence (BI) field, which offers concepts and tech-
niques to improve business decision making by using fact-based
support systems. Similarly, SI offers software practitioners (not
just developers) up-to-date and pertinent information to support
their daily decision-making processes. SI should support decision-
making processes throughout the lifetime of a software system not
just during its development phase.

The vision of SI has yet to become a reality that would enable
software engineering research to have a strong impact on modern
software practice. Nevertheless, recent advances in the Mining
Software Repositories (MSR) field show great promise and pro-
vide strong support for realizing SI in the near future. This position
paper summarizes the state of practice and research of SI, and lays
out future research directions for mining software engineering data
to enable SI.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement

General Terms

Documentation, Economics, Experimentation, Human Factors, Man-
agement, Measurement, Reliability, Verification

Keywords

Software intelligence, mining software engineering data, mining
software repositories
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1. INTRODUCTION
Much of software practice centers around daily decisions and

questions (e.g., when to release a software system? which parts of
a software system to change? which parts of a software system to
test? who is using this feature? and who knows about this feature?).
Unfortunately, nowadays many decisions related to a software sys-
tem are based on intuition and gut feeling. Determining when a
software system is ready for release, whether a part of a software
system should be re-factored or re-written, or which parts of a soft-
ware system should be thoroughly tested is a matter of art instead
of a well-studied science. These haphazard decision processes lead
to wasted resources and increased cost of building and maintaining
large complex software systems.

Software practitioners are in dire need of what we propose to call
Software Intelligence (SI). While Business Intelligence (BI) [27]
offers concepts and techniques to improve business decision mak-
ing by using fact-based support systems, SI offers software prac-
titioners (not just developers) up-to-date and pertinent information
to support their daily decision-making processes. SI provides prac-
titioners with access to specialized fact-supported views of their
software system so they can answer critical questions about it. Us-
ing SI, owners, maintainers, and developers of software systems
can perform long-term and short-term informed strategic planning.
Moreover, SI gives companies a better understanding of the true
potential and actual limitation of their software assets.

Mining software engineering data has emerged as a research di-
rection over the past decade. This research direction has already
achieved substantial success in both research and practice. In this
position paper, we advocate Software Intelligence (SI) as the fu-
ture of mining software engineering data, within modern software
engineering research, practice, and education.

The vision of SI has yet to become a reality. Nevertheless, re-
cent advances in the Mining Software Repositories (MSR) field
show great promise and provide strong support for realizing SI in
the near future, as software engineering research aims to ensure its
relevance and impact on modern software practice. This position
paper summarizes state of practice and research of SI, and lays out
future research directions of mining software engineering data to
enable SI.

2. STATE OF PRACTICE
Prior experiences and dominant patterns are the driving force

for many decision-making processes in modern software organi-
zations. Software practitioners often rely on their experience, in-
tuition, and gut feeling in making important decisions. Managers
allocate development and testing resources based on their experi-
ence in previous projects and their intuition about the complexity
of the new project relative to prior projects. Developers commonly
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Figure 1: Software engineering data, mining algorithms, and

software engineering tasks [31]

use their experience when adding a new feature or fixing a bug.
Testers usually prioritize the testing of features that are known to
be error-prone based on field and bug reports.

The state of SI in practice is very rudimentary with many of the
decisions being supported by gut feeling and at best through con-
sultation with senior developers. However, access to such devel-
opers is limited and the access continues to decrease as systems
age and as developers move across companies. In addition, recent
efforts to document information are very limited in practice. Pri-
marily non-specialized wikis are used as knowledge repositories
and decisions are often made through the support of spreadsheets
and slides.

3. STATE OF RESEARCH
Mining software engineering data has emerged as a research di-

rection over the past decade. This research direction achieved sub-
stantial success in both research and practice. The Mining Software
Repositories (MSR) [16, 14, 17, 19, 29, 31] field is an example
of such a research direction. The MSR field analyzes and cross-
links the rich data available in software repositories to uncover in-
teresting and actionable information about software systems and
projects. Below are examples of software repositories:

Historical repositories such as source control repositories, bug
repositories, and archived communications record informa-
tion about the evolution and progress of a project.

Run-time repositories such as deployment logs contain informa-
tion about the execution and the usage of a software system
at a single or multiple deployment sites.

Code repositories such as Sourceforge.net, Google code, and Code-
plex.com contain the source code of various software sys-
tems developed by a team of developers.

Software repositories contain a wealth of valuable information
about software projects. Using the information stored in these repos-
itories, software practitioners can depend less on their intuition and
experience, and depend more on historical and field data. Histori-
cal repositories capture important historical dependencies [13] be-
tween project artifacts, such as functions, documentation files, and
configuration files. Developers can use this information to prop-
agate changes to related artifacts, instead of using only static or
dynamic code dependencies, which may fail to capture important
dependencies. For example, a change to the code that writes data
to a file may require changes to the code that reads data from the
file, although there exist no traditional dependencies (e.g., data and

control flow) between both pieces of code. Run-time repositories
could be used to pinpoint execution anomaly by identifying domi-
nant execution or usage patterns across deployments, and flagging
deviations from these patterns (e.g., [18]). Code repositories could
be used to identify dominant and correct framework or library API
usage patterns by mining the API usage of a framework or library
across many projects (e.g., [24]).

While software repositories are often used in practice as record-
keeping repositories, they are rarely used to support decision-making
processes. For example, historical repositories are used to track the
history of a bug or a feature, but are not commonly used to de-
termine the expected resolution time of an open bug based on the
resolution time of previously-closed bugs.

The MSR field is one of the most promising fields in support-
ing and enabling widespread adoption of SI. By transforming these
repositories from static record-keeping repositories into active ones,
we can guide decision-making processes in modern software projects.
For example, data in source control repositories, traditionally used
to archive code, could be linked with data in bug repositories to
help practitioners propagate complex changes and to warn them
about risky code based on prior changes and bugs.

The MSR field is maturing thanks to the rich, extensive, and
readily available software repositories. Table 1 lists the descrip-
tions of several examples of software repositories that could be
mined. Figure 1 shows example software engineering data being
mined (the first column), example software engineering tasks (the
last column) assisted by applying various mining algorithms (the
middle column) on each type of software engineering data listed in
the first column [31].

4. ENABLING SOFTWARE INTELLIGENCE

(SI)
We next highlight areas requiring the attention of MSR researchers

and software engineering researchers in general so we can ensure
that the MSR field can fully contribute towards the full develop-
ment of SI. For each area, we briefly mention its current state and
promising new directions that we believe hold great promise for
that particular area.

4.1 SI Throughout the Lifecycle of a Project
Current State. Previous analysis [16] of the publications at the

MSR working conference and workshop [21] from 2004 to 2008
shows that a high percentage (∼80%) of the published papers fo-
cus on source code and bug-related repositories. Part of the reasons
could be that the used bug repositories or source control reposito-
ries are commonly available and the source code and bug reports
are well structured, facilitating automated data analysis and pro-
cessing. The analysis of the MSR publications also reveals that
documentation repositories (e.g., requirements) are rarely studied,
likely due to their limited availability. In summary, the past MSR
publications heavily mined source code and bug-related reposito-
ries, often with strong emphasis in assisting software engineering
tasks in the coding phase of a project’s lifecycle, benefiting primar-
ily developers.

Future Directions. To enable SI, future MSR work should look
beyond the coding phase as this phase represents a small portion of
the lifecycle of a project. Managers, testers, deployers, and support
teams are all stakeholders of a software system and they all need
SI support from the software engineering community. The overly
heavy focus on developers in past MSR work is not healthy and is
limiting the impact of SI on the whole software industry. In ad-
dition, the MSR results and innovations should be integrated into
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Repository Description
Source control
repositories

These repositories record the development history of a project. They track all the changes to the
source code along with the meta-data associated with each change, e.g., the name of the developer
who performed the change, the time the change was performed and a short message describing
the change. Source control repositories are the most commonly available and used repository in
software projects. CVS, subversion, Perforce, ClearCase, and Git are examples of source control
repositories used in practice.

Bug repositories These repositories track the resolution history of bug reports or feature requests that are reported by
users and developers of large software projects. Bugzilla and Jira are examples of bug repositories.

Archived commu-
nications

These repositories track discussions about various aspects of a software project throughout its life-
time. Mailing lists, emails, IRC chats, and instant messages are examples of archived communica-
tions about a project.

Deployment logs These repositories record information about the execution of a single deployment of a software
system or different deployments of the same systems. For example, the deployment logs may record
the error messages reported by a software system at various deployment sites. The availability of
deployment logs continues to increase at a rapid rate due to their use for remote issue resolution
(e.g., remote crash uploading tools), and due to recent legal acts. For instance, the Sarbanes-Oxley
Act of 2002 [6] stipulates that the execution of telecommunication and financial systems must be
logged.

Code repositories These repositories archive the source code for a large number of projects. Sourceforge.net and
Google code are examples of large code repositories.

Table 1: Examples of software repositories

stakeholders’ daily working environments, including but not lim-
ited to Integrated Development Environments (IDEs).

�

�

�

�
SI is more than just helping with coding.

4.2 SI Using Non-Historical Repositories
Current State. The MSR field started out with a strong focus

on historical repositories such as source control and bug reposito-
ries. Therefore, there seems to be a misconception that MSR is
all about historical data sources (or repositories). Such a miscon-
ception needs to be addressed to help SI achieve its full potential.
In our view, MSR and mining software engineering data are syn-
onyms: MSR is about mining any type of software engineering
data (e.g., execution logs [18], code snippets scattered throughout
the Internet [23, 24, 20], and API documents [32]), even when these
data are not stored in an explicit “repository”.

Future Directions. To enable SI, future MSR work should look
beyond the traditional types of software engineering data stored
in repositories. Some emerging promising types of data could in-
clude developer interaction data with tools within IDEs, developer-
meeting notes (even voice recording and recognition with advances
in natural/spoken language processing), recordings of support calls,
and online posting about software products. These types of data
could be of the nature of real-time stream data, which may not be
stored in repositories, due to large volume or privacy concerns. In-
deed, privacy issues need to be taken care throughout software en-
gineering research, as more and more relatively private data are
becoming available for analysis and mining.

In addition, special attention is needed in research and practice in
improving the collection of data. The existing mechanisms of data
collection rely heavily on a large number of heuristics – leading
to possibly noisy data. Future MSR work should make proactive
suggestions and influences on improving the repository or IDE de-
sign [10] to ease the collection of data. Some modern IDEs such
as IBM Jazz [3] and Microsoft Visual Studio Team Foundation
Server [4] are leading examples in the right direction (e.g., allow-
ing explicit traceability across artifacts to be accurately specified
rather than being mined from noisy data). However, a great amount
of work is needed towards creating higher-quality data for mining.
As the SI field matures, we envision the creation of new roles who

are focused on maintaining and curating the various types of repos-
itories about software projects. These curators would ensure that
high quality data is stored in these repositories and that they are
preserved over the years.

Finally, new opportunities could be exploited by mining multiple
sources of software engineering data at the same time, even among
heterogenous data such as textual data from bug reports and execu-
tion data from their associated failing tests (e.g., [28, 22]).

�

�

�

�

SI should leverage all types of repositories not just historical

ones. .

4.3 SI Use of Effective Mining Techniques
Current State. Past MSR work heavily exploited basic off-the-

shelf data mining (DM) algorithms (such as association rule min-
ing and frequent itemset mining [15]) or tools (such as Weka [8]).
When MSR researchers explored and applied mining techniques
on software engineering data, they commonly compromised their
mining requirements to overfit what these basic off-the-shelf algo-
rithms or tools could provide.

Future Directions. To enable SI, future MSR work should fol-
low a problem-driven methodology in advancing the field: (1) em-
pirically investigate problems in the software engineering domain,
(2) identify mining requirements for addressing those problems,
(3) adopt or adapt advanced mining algorithms [9] from the DM
community, or develop new mining algorithms [26, 25] for satisfy-
ing the mining requirements. Indeed, inventing new mining algo-
rithms for MSR needs could be challenging for software engineer-
ing researchers. One possible solution is to collaborate with DM
researchers. Another possible solution is to adapt or integrate ex-
isting mining algorithms by conducting preprocessing of input data
or postprocessing of mined patterns.

�

�

�

�
SI and DM fields should work closer.

4.4 SI Adoption in Practice
Current Practice. Successful products from Coverity [1] and

Pattern Insight [5] already integrate ideas and innovations based
on mining software engineering data. These products are used by
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practitioners worldwide. Given the dependence of SI on already-
available repositories (e.g., historical changes, code or execution
logs), the barrier and cost for experimentation with SI innovations
are considerably low compared to other software engineering inno-
vations and techniques (e.g., extreme programming or agile devel-
opment). In short, if your company has a repository, you can mine
it with minimal effort.

Future Directions. To enable the widespread adoption of SI, we
must first consider the level at which SI support is being provided.
For example, SI could help practitioners decide on small-level is-
sues (e.g., review a particular change) or large-scale issues (e.g.,
re-design a particular portion of a software system). The lower and
more focused the challenges or questions that an SI technique pro-
vides, the more likely it will be adopted. The less commitment and
approvals that are needed throughout the management chain in an
organization, the more likely the SI recommendation will be fol-
lowed (e.g., review this change that you just made versus re-design
this component).

Second, we need to make sure that SI techniques are intuitive
and the SI results are easy to explain and describe. Explainability
and intuitiveness are key, even over higher performance since buy-
in throughout a software organization is often a major hurdle: no
one would be willing to run their business based on a magic box.
While some mining techniques [15] provide mining results with
high explainability, an organization will still need to feel confident
and at ease with the explanations. In addition, effective tool sup-
port such as visualization in understanding the mining results and
the data being mined will help in better communicating SI results
throughout an organization from developers to managers.
�

�

�

�
SI should help explain but will never replace practitioners.

5. DISCUSSION AND CONCLUSION
More thoughts are needed to exploit the achievements and lessons

learned in the BI field. In many ways, SI is BI for software compa-
nies. We should explore whether we can sell software engineering
decision making as part of traditional BI platforms, since software
plays critical roles in more and more businesses, and software busi-
nesses are just a special type of business. We could explore whether
we could exploit and reuse traditional BI platforms. For example,
IBM’s recent Rational Insight product [2] uses the Cognos BI plat-
form to provide SI to project managers. Building SI on top of BI in-
frastructures holds great promise in enabling easier adoption since
BI infrastructures are much more advanced and polished, and are
already adopted in many large organizations.

We see SI as providing support for not just software practitioners
but also for software engineering researchers. For example, SI can
help support research directions and focuses by enabling automated
empirical software engineering. We envision a synergetic feedback
loop between data generation/selection (based on mining results)
and data mining (based on generated data). Recent software test-
ing work [30, 11] is already exploring this feedback-loop concept,
which is also known as active learning [12] in the machine learning
community.

SI will play more and more important roles in evaluating re-
search outcomes. Research projects and papers can and should
be evaluated relative to their SI abilities, and they must demon-
strate true value to practitioners. In the MSR field, several start-up
companies (founded by academia based on MSR research), such as
Coverity [1], Pattern Insight [5], and Tasktop [7], already demon-
strated high promises in providing substantial SI capabilities to in-
dustrial practices. We expect more such technology transfers and
more SI success stories.

While we propose a strong emphasis on practical utilities and ap-
plications, SI should not and will not suffocate deep and long-term
research. For example, SI will provide researchers and practitioners
facts and evidence to help them design evolutionary or transforma-
tive approaches such as new languages and tools, and decide on
adopting them or not using facts instead of intuition and gut feel-
ing. We envision that SI will be an enabling platform for various
types of research throughout software engineering.
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